
An Explication (1) of the Concept "Analogy" 

Introduction 

In this article we have tried to give an explicit interpretation to the 
concept "analogy", which, according to us-is used too often in an intuitive 
way without explicit definition. 

In this interpretation we have constructed a quantification function for 
analogy. This quantification function is dependant on a digital automaton 
but under certain conditions extendible to an analog automaton. We have 
tried to prove that this quantitative function is a distance function. 

The importance of the proof viz. that our quantification function is 
a distance function, seems to us firstly, that because of this, it is possible 
to define the surroundings of a point and from there to impose a topology 
to a set. Furthermore it is possible, thanks to the existence of a topology, 
to define continuities and limits. A topology, based on a distance function 
is also a hausdorffse or divided topology which entails that the limit of 
a row (if this limit exists) is unique (2). 

After all this, we compared our interpretation with J. M. Bochenski's 
alternative-analogy-theory which he explains in thi8 article "Ueber die 
Analogie" (3). His definition we have regarded as a specific form of analogy 
in our interpretation with the characteristics inl respect thereto as they 
are given by Bochenski. We also denied-according to us-Bochenski's 
criticism on the alternative-analogy-concept as being trivial. 

Here we would like to thank Prof. Apostel, who has strongly influenced 
us, also Prof. De Punt, to whose courses "Principles of differential and 
integral calculus, and calculus of probability", we owe a great deal and 
whose indications have determined the structure and the clarity of this 
article to a great extent. We also want to thank Dr. Crombez, who assisted 

(1) By explication we understand the concept which Carnap R. defines in his "Logical 
Foundation of Probability" as follows: "By an explication we understand the transformation 
of an unexact concept, the explicandum into an exact concept the explicatum (p. 1) ... The 
explicatum must be given by explicit rules for its use, for example by a definition, which 
incorporates it into a well-constructed system of scientific either logico-mathematical or 
empirical concepts (p. 3) ... A concept must fulfil the following requirements in order to be 
an adequate explicatum for a given explicandum a) A simularity to the explicandum, 
b) Exactness, c) Fruitfulness, d) Simplicity (p. 5). 

(2) For all these properties of a distance-function see Wolfgang, Franz, "Topologie", 
I Allgemeine Topologie, Sammlung Goschen Band 1181, Berlin 1960. 

(3) Bochenski, J. M. "Logisch Philosophische Studien," Verlag Karl Alber, FreiburgJ 
Miinchen 1959, "Ueber die Analogie," pp. 107-129, and above all "Die Alternativ
theorie," pp. 119-124. 
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us in the correction of the proof of the distance function. We would also 
like to extend our thanks to Mrs. Orlans who aided us in composing the 
English text. 

Naturally we remain solely responsible for the eventual imperfections in 
our conception and its elaboration. 

Description of Inputs, Abstractors, the Transmission 
of the Description to the Description-Model 

By the description of an input we mean a' defi~ite "datum" e.g. a binary 
nUlnber that an input will cause the automaton to produce as one of its 
internal states in function of the input-unit and the main-program and in 
which form the input will further influence the activity of the automaton. 

By description-model we mean a part of the memory-unit, in which the 
descriptions of the inputs are stored. 

In a digital automaton A we have a number of places (receptors) along 
which the automaton can receive inputs. We call an input accepted when 
it gets a certain description which is stored in the input-register. An input
register is a composition of memory-cells (storage) which constitutes a part 
of the input-unit and where descriptions (for us sequences of noughts and 
ones) can be stored. 

We can compare the receptors to the receptors of a person such as 
hearing, touch, smel1... . The nature of the stimulus which is accepted by 
the input-receptors (viz. which will receive a description which will be 
included in the input-register) when these are ready to receive, is dependant 
on the characteristics of the input-cells (these are cells which form an 
input-receptor) and of the input-unit as a whole. 

The descriptions stored in the input-register will be transmitted at the 
order of the main-program, after having been brought by the abstractors or 
not, to the description-model. 

An abstractor is a part of the automaton which according to a determined 
principle disregards an amount of information of a description so that we 
can arrive at a less great diversity or even to an identity of certain descrip
tions (4). In the description-model the descriptions will be stored according 
to a well determined strategy (5). A strategy which must see that as few 

(4) For elaboration of some abstractors see Culbertsen, J. T., "Consciousness and 
Behavior," pp. 83-126, W. M. C. Brown Company 1950. 

(5) An explication of various storage-strategies may be found in our licentiate treatise 
"Schets voor een gedeeltelijke simulatie van het betekenisbegrip in een automaton," 1966 
("Sketch of a partial simulation of the concept of meaning in an automaton") also in Halle 
and Stevens "Speech Recognition," "A model and a program for research" in "The structure 
of language," Readings in the philosophy of Language, ed. by Jerry A. Fodor, Jerrold J. Kats, 
Prentice Hall Inc. New Jersy, 1964. 
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identical descriptions as possible will be stored in different places of the 
model. Then if a description appears in the input-register and if this 
description has been previously stored in the description-model and has 
not yet been erased, then by means of the storage-strategy (storage-program) 
this description in the model must be activated (activation e.g. by increasing 
the magnetism in the memory-cells in question where this description is 
stored). 

In case the storage strategy established that the description is not yet
or no more-stored in the description model, then by order of the main
program this description will be transmitted from the input-register to 
a well determined place in the description-model. 

The following situation is also conceivable, viz. that in the input-register 
descriptions are stored in order of appearance at the input receptor and 
once the register is full, the contents of this register is stored by means of 
the storage-strategy just explained. 

Now one could get the impression that only descriptions from inputs 
are present in the model. It is however not excluded that also results of 
compilations with elements already previously stored in the memory are 
admitted, after having been brought by an abstractor or not. It is also 
possible that information concerning internal conditions of the automaton 
can be stocked. We do not exclude the possibility either, that before any 
information is brought in along input or internal observation, the descrip
tion-model already contained description series (thus a-priori elements). 
These may possible be explained as necessarly or accidentally ensuing 
from the construction of the automaton. . 

With the data we have assumed up to now, solipsism remains possible, 
viz. in case every input would be an output of the automaton. Realism as 
well as idealism also remain possible. 

I I. Dimensions 

The number of dimensions which a description will have is equal to 
the number of abstractors through which we must pass the description, 
to be left with no description at all as a final result. 

This can be realized by constructing the abstractors in such a way that, 
that part which is taken up in a certain abstractor is substracted from a 
description and not that from which the abstractor will make abstraction. 

We should be able to achieve this simply by the construction that an 
abstractor as output 

a) has on the one hand that part of the description which has exercised no 
influence on the condition of the abstractor and 
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b) on the other hand the description of the internal condition of the 
abstractor in question and 

c) -if desired-the original description. 
The name of each abstractor through which the description is passed, 

is the name of a dimension of the description. That which is thus obsorbed 
by the abstractor used, forms a datum in a dimension of the description. 

III. Our Interpretation of Analogy and Quantification 

With an expression such as " 'a' is analogous with 'b' " is meant that in 
a certain aspect 'a' is identical to 'b'. Besides the problem of pointing out 
in which aspects 'a' must be identical to 'b', in such a way that 'a' is 
analogous with 'b', it is interesting to quantificate the extents to which 
they are analogous (the extents of being identical in the mentioned aspects). 

With regards to the first problem we say in a first approach that 'a' 
will be analogous to 'b' when 'a' has a number of dimensions common to 
'b' (6) or in other words, if the cross section of dimensions of 'a' and of 
'b' is not empty. A first approach of quantification of this analogy we can 
obtain as follows. 

Let be: 

I : the number of dimensions of 'a' which are identical with dimensions 
of 'b' for the automaton X 

m : the total number of dimensions of 'b' for the automaton X 

n : the total number of dimensions of 'a' for the automaton X 

K: the number of dimensions which 'a' has and which 'b' does not possess, 
increased by the number that 'b' has and which 'a' does not possess. 
Here K is always a positive number. 

Then we say that 'a' in the following extent: 

[2 . 1 

mn' (K + 1) 
(formula I) 

is analogous with 'b' for the automaton X. 
A greater specification (second approach): it is obvious that different 

data, within one and the same abstractor, can still vary greatly. So for 
example within a formabstractor, an ellipse and a circle will still differ to 
a great extent. It will be necessary to indicate to which extent data, within 
one and the same abstractor, are analogous with one other. 

(6) Bochenski in his article "Ueber die Analogie" (see note 3) also constructs an analogy 
on the base of "Identitat einer Reiche vor formale Eigenschaften der betreffenden Bezie
hungen." This in his isomorphic theory. 
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This can be done by comparing the formulae, which express the data 
within a certain abstractor. 

The analogy will lie in these elements, which are identical in both 
formulae. To quantify, we accept the rule, that the less the differences that 
there are between both the formulae the greater the analogy will be. 

We express this by the formula 

1 
(formula II) 

I x 1+ 1 

1 x 1 is equal to the addition of the modulus of the differences of the com
ponents of the formula in its simplest fraction which reproduce the condition 
of an abstractor for this part of the description of 'b', which is received by 
the abstractor in question, with the corresponding components of the 
formula, also in its simplest fraction, which reproduces the condition of 
the abstractor for this part of the description of 'a', which is received by 
the abstractor in question (If the operators differ in two formulae, then x 
could be increased, for instance by 10, per operator). (7) 

We take modulus x (the modulus of a number is the absolute value of 
this number) for two reasons: 

a) In case a component of the formula of 'a' is greater than the corre
sponding component of 'b', than we would obtain a negative value when 
making the difference b - a. Therefore x, could possibly be negative 
and hence also the whole expression. To always have a positive number 
we take the modulus of x. 

b) The second reason we take the modulus of x is, that in the formula 
1/(1 x 1 + 1), x may never be equal to -1, because then we get zero in 
the dominator, owing to which we get something which is not alge
braically permissable. 

In the formula: 1/(1 x 1 + 1) if 1 x 1 = 0 or in other words if both the 
formulae are identical, we get as a result 1, and only then. As 1 x 1 is larger, 
viz. the more the two formulae differ, the smaller the result of 1/(1 x 1 + 1) 
will become, or in other words the smaller the analogy will be, in case 
1/(1 x 1 + 1) expresses the extent of analogy of two data in one and the same 
abstractor. 

Within a form-abstractor, for instance we want to determine the analogy 
of an ellipse with a circle by means of the formula 1/(1 x 1 + 1). 

(7) We could also construct I x I as a modulus of the multiplication of the differences
between the corresponding components of the formulae-different from zero and I x I = 0 
if no differences appear different from zero, or also I x I = to the addition of the square of 
the differences between the corresponding elements of the formulae. 
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Let within this form-abstractor the formula for an ellipse be this formula, 
which generally is used in analytic geometry, viz. 

x2 y2 
a2 + 7Ji = 1 (see note 8) 

Within the same abstractor we take as formula for a circle this formula, 
which is also used in analytic geometry, viz.: 

x2 y2 
a2 + a2 = 1 (see note 8) 

Let in a certain ellipse b = 5 and a = 2, then the analogy between the 
ellipse ('a') with b = 5 with a circle ('b') with a = 2, will be dependant on 
the formula 1/(1 x 1 + 1). Here the x is a2 

- b2 = 4 - 25 = -21. 
1 x 1 = 21 and the analogy between both is 1/(1 24 1 + 1). 

In the determination of the analogy of a datum 'a' with a datum 'b' for 
the automaton X, we must take into account the extent of analogy by identical 
dimensions (= abstractors), and the extent of analogy within one and the same 
dimension (abstractor). 

To now construct an analogy formula, which takes both analogy quan
tifications into account, we can multiply this analogy, determined in 
function of the identical dimensions, (after having divided by the maximal 
number of dimensions of 'a' or 'b', which we call m) with the sum of 
analogies within these identical dimensions. 

Finally we obtain as measure for the analogy between 'a' and 'b' for the 
automaton X the formula III. 

[2 • liz 1 
mn . (K + 1) . m . t I x 1+ 1 

where by L:i is the abbreviation for L:~=1 which indicates that the sommation 
must be made of the analogies within the abstractors 1 to I which are identical 
dimensions of the data 'a' and 'b' for the automaton X. 

In case I = m = n, K = 0 and 1/(1 Xi 1 + 1) = 1 within each ab
stractor, then the formula III will be equal to 1, or in other words we then 
have maximal analogy of 'a' with 'b', or still: 'a' is identical with 'b' for 
automaton X. That formula III is here equal to 1, we see for the fact that, 
when I = m = nand K = O. We get 

(8) Kuypers, L., and Tirnman, R, "Handboek der wiskunde." Dee! IV. "Analytische 
Meetkunde," door F. -Loonstra, pp. 77-84. 
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Because on account of the datum for each abstractor the analogy is maximal, 
or in other words x = 0, we have that in each abstractor 1/(1 x I + 1) = 1. 
As we here have m abstractors, we get here 

Thus 

The more the result of formula III gets smaller than 1, the more the 
analogy between 'a' and 'b' gets smaller; the more it approaches 1, the more 
the analogy gets larger. 

IV. Our Quant:ification FWlction is a Distance FWlction 

A distance function is a function d: X X X ~ R+ by which (a, b) ~ d( a, b) 
and which satisfies the following conditions: 

(1) d(a, b) > 0 for a =F b 

(2) d( a, b) = 0 for a = b 

(3) d(a, b) = d(b, a) 

(4) d(a, b) + d(b, c) ~ d(a, c) (see note 9) 

The function fIV' viz. d = (1 - (f(Im)) or 

[2 xii z 1 
1 - m X (K + 1) X m X t I x I + 1 

which we regard as the determining distance-function for analogy, satisfies 
the 4 above conditions. 

1) It satisfies condition (1) 

In case either I =F n or I =F n or K =F 0 or 2:i 1/(1 x I + 1) =F m then 
will certainly f(Im =F 1 and 1 - fum =F O. In addition f(Im is always less 
than or equal to 1 and always greater than or equal to O. 

(9) De Punt, J., "Infinitesimaalrekening en beginselen der waarschijn1ijkheidsrekening," 
unpublished course, 1964-1965, and also Patterson, E. M., "Topology," Oliver and Boyd, 
New York 1959, p. 26. He proves that when conditions (2) and (4) are fulfilled, then also 
conditions (1), (2), (3) and (4) are fulfilled. 
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Now, as a -=I=- b for X, due to the construction, one of either above
mentioned inequalities will appear and 1 - f{Ill) -=I=- 0 and be more than O. 

2) It satisfies condition (2) 

As a = b for automaton X,' then fIll = 1, as has already been shown 
above; with the result that the flV , viz. 1 - f{Im = O. 

3) It satisfies condition (3) 

Or in other words fII1(a, b) = fII1(b, a). 
If 'a' possesses (n) dimensions and 'b' (n + 2) dimensions and in addition 

'a' and 'b' have n - y dimensions in common, we obtain for the part 
(12 X 1)/[n . m X (K + 1)], for fIlI(a, b): 

l=n-y 
m =n+z 
n=n 

K = 2y + z ('a' possesses y dimensions which 'b' does not possess 
'b' possesses y + z dimensions which 'a' does not possess) 

and hence 

(n - y)2 X 1 
(n)(n + z) X (2y + z + 1) 

For this same part we get for fIII(b, a) 

and hence: 

l=n-y 
m =n 
n=n+z 

K = 2y +z 

(n - y)2 X 1 
(n + z)(n) X (2y + z + 1) 

It is clear that for this part for fIIl(a, b) and fIlI(b, a) we get an identical 
result. 

Due to the construction we must multiply these identical parts in both 
cases with 11m; m in both cases is = (n + z) or the greatest number of 
dimensions which is to be found in those compared. 

For the second part of the formula for fII1(a, b) andfIlI(b, a) the summa
tion L~ will be equal for both, as the 1 is the same for both, in case within 
each abstractor the analogy of (a, b) is still now equal. 

The analogy within the abstractor is determined by the formula II 
1/(1 x 1 + 1). In this formula the only variable is x. 1 x 1 is due to con-
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struction (see above) the modulus of the result of the addition of the 
modulus of the differences between both the formulae, which reproduces the 
condition of the abstractor (which is a dimension of 'a' and 'b') when 'a' 
is present and when 'b' is present. The differences between the formulae for 
(a, b) or (b, a) will have one and the same value. And the addition of 
these absolute values will also be identical for (a, b) as for (b, a). 

Thus the condition (3) is also satisfied, because whenfiI1(a, b) = fIIl(b, a) 
then is /;.v(a, b) = fIV(b, a). 

4) The function flY satisfies condition (4) 

As reminder: 
[2 X 1 

(II) = nm X (K + 1) 
1 

(III) = / x / + 1 

[2 xII z 1 
(1m) = nmX (K + 1) X m X t / x / + 1 

(fiv) = (1 - /111) 

We regard the following data: 

hence: 

Let in A n = r (n is the number of dimensions) 
Let in B n = sand r ~ s ~ v 
Let in C n = v 

[ _ tl < r 
ab - tl ~ s 

1 _ t2 < s 
be - t2 ~ v 

[ = t3 < r 
ae t3 ~ V 

With these data we can construct the following functions: 

t 
.f. (a b) - (tl)2 X 1 X ! X ~ 1 
JIll' -rsx[(r-t1)+(s-t1)+I] r -7/ xab/+ 1 

t 
.f. (b c) - (t2)2 X 1 X ! X ~ 1 
JIII, - sv X [(s - t2) + (v - t2) + 1] s -7 / Xbe / + 1 

(t3)2 xlI ts 1 
IIII(a, c) = rv X (r - t3) + (v - t3) + 1 X r X t / Xae / + 1 
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It remains to be proved 

(1 - fm(a, b» + (1 - fIIlb, c» ~ (1 - fm(a, c» 

(2 - fIIl(a, b» + fIIl(b, c) ~ 1 - fIIl(a, c) 

1 - (fIIl(a, b) + fIII(b, c» ~ -fIIl(a, c) 

-fm(a, c) ::::;; 1 - (fIIl(a, b) + flII(b, c» 

-1 - (fIIl(a, c» ::::;; -(iIII(a, b) + fIIl(b, c» (1) 

The method we will follow to prove the inequality (I) is the following: 

A: r > s or s > v. 

The following cases remain possible here 

A.a: r > s > v. 
The first member of the inequality (I) is always less than -1 (argumenta

tion: see further). If every part of the addition from the second member 
::::;; t then its negation will always be ~ -1 and as a result the inequality 
will be proved. 

A.b. when r = s > v, then the inequality remains valid. 

A.c: when r > s = v then idem. 

B: What about the inequality (I) if r = s = v? The first question 
which presents itself here is which possibilities remain. These are: 

B.a: tl = t2 = t3 = r 

t1 1 
L =r 
1 I Xab I + 1 

1 L =r 
1 I Xao 1+ 1 

and thus a = b = c 

B.b: tl < rand t2 < r. Here the same reasoning as in A. Inde
pendant of the value of t3 , the inequality will be proved here. 

B.c: tl = r or t2 = r or both = r. 

B.c.1: in case tl = t2 = r. 
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B.c.2: t1 = rand t1 =F t2 or reversed, in both cases the proof is to 
be made in the same way. 

e: That /IV(ab) + /IV(bc) ~ /IV(ac) will be proved by A and B. Now 
there still remains to be proved that /Iv(bc) + /IV(ac) ~ /IV(ab) and 
/IV(ab) + /IV(ac) ~ hv(bc). These two inequalities may be proved in the 
same way as /Iv(ab) + /Iv(bc) ~ /IV(ac). 

Proof that in above- mentioned possible cases inequality is valid. 

A.a: The first part of the inequality (I) (we call this Ia) is always less 
than -1, in case/III(a, c) is always positive 

t 
(t3)2 xlI 3 1 

fm(a, c) = rv X [(r - t3) + (r - t3) + 1] X r X ~ Xac + 1 

Due to construction t, r, v, I Xac I is always positive. Due to construction 
ts ~ rand t3 ~ v is also always positive. 

As a result we have that 

r - t3 ):: 0 

V - ta ):: 0 

Therefor the first member of the inequality (Ia) is always less than or 
equal to -1. The second member of the inequality I (we call this mem
ber Ib) consists of the negative of an addition. In case each term of this 
addition is less than t, its negative will always be greater than -1, and 
as a result the second member of the inequality will always be greater than 
the first member (what has to be proved). We shall thus look under which 
conditions /IlI( a, b) ~ t and hII( a, b) ~ t, and then examine if in the 
cases where /III(a, b) > t or /IIlb, c) > t or both> t the inequality is 
still valid. 

t 
.f (a b) - (t1)2 X 1 X ! X ~ -:----_1:---:-
JIlI, - rs X [(r - t1) + (s - t1) + 1] r 't I Xab I + 1 

As we must prove that /IlI( a, b) ~ t, then, if we take the maximum value 
of /III( a, b) and if this maximum value still ~ t, will be proved that 
/lIla, b) ~ t. 

The max. value of 
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The maximal t1 = s (datum) 

S2 X 1 X _!...::;::! 
rs X (r - s + s - s + 1) r ~ 2 

s ~ r due to datum 
S2 1 

rs X (r - s) + (s - s) + 1 ~:2 
s ::;::! 

r2 - rs + r ~ 2 

2s ~ r2 - rs + r 

(r + 2)s ~ r(r + 1) 

-" r(r + 1) 
s=::::::::. r+2 <r 

s < r. Thus if Is < rl the inequality is true. When r = s then as opposed 
to it, the inequality is not satisfied. 

For /IIlb, c) ~ t we have an analogous proof. 

Conclusion: From the proof of (Ia) and (Ib) it follows that in case 
r > s > v the triangular-inequality /IV(a, b) + /Iv(b, c) ~ /IV(a, c) applies. 

B: We must now examine what happens when r = s = v. 

B(a): If a = b = c then r = s= v and t1 = t2 = t3 

t3=1 

2: 1 =T 
1 I xac I + 1 

and /Il1(a, c) = 1; :hII(a, b) = 1; /III(b, c) = 1 (reason see above). 
The inequality I will then be: -1 - 1 ~ -(1 + 1) and will thus be 

satisfied. 
B(b): Another possibility is that a =I=- b =I=- c but r = s = v, then it is 

possible that t1 =1= t2 =1= t3 or 

~ ~ ~ 

2: 1 =1=2: 1 =1=2: 1 
1 I Xab I + 1 1 I Xbc I + 1 1 I Xac I + 1 

The first member of the inequality (1), with these facts, will also always be 
less than -1, because /III(a, c) is always positive (see above). 
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Here also in case each member of the addition of the second member 
of the inequality is less than i, the inequality (I) will be valid. This is so 
in case tl < rand t2 < r. 

!1I1(a, b) < i: 
t 

(tl )2 xlI 1 1 
!III( a, b) = r2(2r _ 2tl + 1) X r X ~ I Xab I + 1 

~ (tl)2 X tl 
-.;::;: r2(2r - 2tl + 1) X r 

~ (tl )2 
-.;::;: r2(2r - 2tl + 1) 

according to data 

~ (tl )2 
-.;::;: r2[2(r - tl) + 1] 

In the event that we have tl < r, and as rand tl represent numbers from 
the row of natural numbers, as a result the minimum r - tl = 1. 

Hence: 

The second part of the addition from the second member of the inequality (I) 
with the data from B(b) is proved in the same way. Thus if t2 < r then the 
inequality (I) is also proved. 

B( c): The condition only remains where: 

r=s=v 

or or 

Here we can distinguish two possible cases: 

B(c.l ): In case tl and t2 are equal to r then t3 will also be equal to rand 
'a' and 'b' and 'c' will have the same dimensions. 

B( c.2): In case tl = rand tl =1= t2 then t2 will be equal to t3 and 'a' 
and 'b' will have the same dimensions. 

The Case B( c.3): t2 = rand tl = t2 then tl = t3 and 'b' and 'c' will 
have the same dimensions. The proof of this happens in the same way as 
B(c.2). 
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B(c.1): a =1= b =1= c; r = s = v; tl = t2 = t3 = r. Here the difference 
will lie in 

tl 1 t2 1 ta 1 

I I II#- or = L I II#- or = II I Xac I + 1 1 Xab + 1 ~Xbc + 

Here we again get inequality (I). Every part of the inequality can be divided 
by: 

r2 xii 
-=r2-x----=-:[ (:--r -r--:-) --:-+-(-:-r----=-r )-+---:-:"1) X 2 

as this expression belongs to the fIlla, b), fIlI(b, c), flll(a, c). We obtain the 
result. 

-1 X r2 X (r - r + r - r + 1) X r ....:.. ± 1 
r2 XiI I Xac I + 1 

~(± 1 +± 1 ) 
~ - 1 I Xab I + 1 be I Xbc I + 1 

or simplified 

r 1 (r 1 r 1 ) 
-r - I ~ - I + I.,-----:---

1 I Xac I + 1 ~ 1 I Xab I + 1 1 I Xbc I + 1 

Now: 

a) 
r 1 r-:-k 1 k 1 . 
I =I +I----
1 I Xab I + 1 1 I Xab I + 1 1 I Xab I + 1 

k is the number of dimensions where I Xab I =1= O. where I Xab I = 0 will 
I Xbc I = I Xac I 

b) 
r 1 r-k 1 k 1 L =I +I~~ 
1 I Xac I + 1 1 I Xac I + 1 1 I Xac I + 1 

c) 
r·l r-k 1 k 1 
I =I· +I~~ 
1 I Xbc I + 1 1 I Xbc I + 1 1 I Xbc I + 1 

r-k 1 k 1 
=I. +I---

1 I Xac I + 1 1 I Xbc I + 1 
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Thus: 

r-k 1 Ie 1 r-k 1 k 

-r- I -I ~ -I -I--
I I Xac I + 1 1 I Xac I + 1 ~ 1 I xab I + 1 1 I xab I + 1 

r-k 1 k 1 k 1 r-k 1 
- I---I -r-I ~ -I -:--~---:-

1 I Xac I + 1 1 I Xbc I + 1 1 I Xac I + 1 ~ 1 I Xab I + 1 

k 1 lc 1 r-k 1 
-I -I I =r-k 

1 I Xab I + 11 I Xbc I + 1 1 I Xab I + 1 

lc 1 lc 1 lc 1 
-r - I ~ -r + k - I - I -:---:----:-

1 I Xac I + 1 ~ 1 I Xab I + 1 1 I Xbc I + 1 

lc 1 lc 1 lc 1 
-k - I ~ -I - I-:---:~ 

1 I Xac I + 1 ~ 1 I Xab I + 1 1 I Xbc I + 1 

(The last inequality we call the inequality III) 

k + f 1 2 +f 1 + f 1 
1 I Xac I + I?' 1 I Xab I + 1 1 I Xbc I + 1 

k (a natural number) is the number of dimensions where I xab I =J= 0; every 
element from the sommation is thus smaller or equal to t (Xi is always 
a whole number see earlier). 

Thus: 

I 1 ~~ 
1 I xab 1+ 1 ~ 2 

or generally 

f 1 <E 
1 I xab I + 1 2 

where 1 ~ P ~ k 

k 1 lc-Z 1 Z 1 
I =I +I-:---:~ 
1 I Xbc I + 1 1 I Xbc I + 1 1 I Xbc I + 1 

1 is the number of dimensions from the k dimensions where I X bc I =J= 0 

k 1 k-Z 1 Z 1 
I =I +I--1 I Xab I + 1 1 I Xab I + 1 1 I Xab I + 1 

k 1 lc-Z 1 Z 1 
I =I +I-:---:~ 
1 I Xac I + 1 .. I Xac I + 1 I Xac I + 1 
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As in the dimensions k - 1, I Xbc I = 0 shall I Xac I = I Xab I and thus: 

k-Z 1 k-Z 1 
2: = 2: -:--:--~ 
1 I Xac I + 1 1 I Xab I + 1 

k+I 1 +t 1 ~Iz 1 +t 1 
1 I Xac I + 1 1 I Xac I + 1 c:?' 1 I xab I + 1 1 I xab I + 1 

k+± 1 ~± 1 + I Z 

1 
1 I Xac I + 1 c:?' 1 I xab I + 1 1 I Xbc I + 1 

+± 1 I 1 =k-l 
1 I Xbc I + 1 1 I Xbc I + 1 

1+ t 1 ~ ± 1+ ± 1 
1 I Xac I + 1 c:?' 1 I xab I + 1 1 I Xbc I + 1 

Then as 

± 1 ~~ 
1 I xab 1+ 1 ~ 2 

and ± 1 ~l 
1 I Xbc 1+ 1 ~ 2 

the inequality is proved. 
B(c.2): a -=F b -=F c r = s = v 

if tl -=F t2 and tl -=F t3 then t2 = t3 

(t3)2 xII ta 1 
-1 - r2[(r _ t3 + r - t3) + 1] X r X t I Xac I + 1 

( 
r2 X 1 r 1 (t )2 X 1 

~ - X + 3 ~ (r2 X 1 )r t I Xab I + 1 r2(r - t3 + r - t3 + 1) 

1 ts 1 
x-x2: ) 

r 1 I Xbc I + 1 

1 r 1 (t3)2 1 ts 1 
~ -(- X 2: + X - X 2: ) ~ r 1 I Xab I + 1 r2(2r - 2t3 + 1) r 1 I Xbc I + 1 
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1 r 1 (t3)2 1 ts 1 ta 1 
-1~--2: - X-(2: -2: ) 

~ r 1 I Xab I + 1 r2(2r - 2t3 + 1) r 1 I Xbo I + 1 1 I xao I + 1 

r 1 (t3)2 ts 1 ts 1 
-r~2: -2 (2: -2: ) 

1 I xab I + 1 r (2r - 2t3 + 1) 1 I Xbc I + 1 1 I Xac I + 1 

-r ~ _ ± 1 _ (t3)2 (I 1 _ I 1 ) 
-...;::: 1 I Xab I + 1 r2(2r - 2t3 + 1) 1 I Xbc I + 1 1 I Xac I + 1 

r _ ± 1 >-= (t3)2 (I 1 _ I 1 ) 
1 I Xab I + 1 ?' r2(2r - 2t3 + 1) 1 I Xbc I + 1 1 I Xao I + 1 

r is the number of dimensions in A. 
r - (k + h') is the number of dimensions where Xab = O. 
k is the number of dimensions where Xab =1= 0 and which belong to C. 
h' is the number of dimensions which in Xab =1= 0 but which don't 

belong to c. 

r - (k + h') + (k + h') = r 

r-(k+b') 1 k 1 b' 1 
r-(2: +2: +2: ) 

1 I Xab I + 1 1 I Xab I + 1 1 I Xab I + 1 

Ie 1 k 1 
~ 2: - 2: ..,------,---

1 I Xbc I + 1 1 I Xac I + 1 

r-(k+b') 1 k 1 b' 1 
r - 2: ------ - 2: - 2: ------I Xab I + 1 1 I Xab I + 1 1 I Xab I + 1 

>-=I 1 -I· .1 
?' 1 I Xbc I + 1 1 I xao I + 1 

r - (r - (k + h')) - t I xab f + 1 - t I xab ~ + 1 

>-=I. 1 _I 1 
?' 1 I Xbo I + 1 1 I xac I + 1 

k 1 b' 1 
r - r + k + h' - ~ I Xab I + 1 - ~ I Xab I + 1 

>-=I 1 I 1 
?' 1 I Xbc I + 1 - 1 I xac I + 1 
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k + b' - f: 1 ~ I 1 - I 1 + t 1 
1 I Xab I + 1 -;::;...- 1 I Xbc I + 1 1 I xac I + 1 1 I xab I + 13 

k + b' + t 1 ~ t 1 + t 1 ~+ f: 1 
1 I Xac I + 1 -;::;...- 1 I Xbc I + 1 1 I xab I + 1 - 1 I xab I + 1 

t 1 ~k 
1 I xab I + 1 -...::::: 

f: 1 ~ b' 
1 I Xab I + 1 -...::::: 

We take the maximal value of 

f: 1 = b', 
1 I Xab I + 1 

then we get the inequality. 

k + t 1 ~ t 1 + t 1 (inequality (IV) 
1 I Xac I + 1 -;::;...- 1 I Xbc I + 1 1 I Xab I + 1 

Proof of this inequality is identical to the proof of the inequality III in 
B.c.I. 

So also the case B.c.! satisfies the triangular inequality 

A.b: 

1 tl t r 
if r=s then frrr(a, b) > 2 if tl = r andL~-..!..=-

1 -;::;...- 2 2 

As s=l=v will 
1 

fuyJb, c) < 2 

if tl = r then will ta = t2 

When working out the inequality (I), taking into account the above data 
we get: 

( 
(ta)2 1 ta 1 ) 

-1 - rv X ((r - ta) + (v - t3) + 1) X r X t I Xac I + 1 

(
1 tl 1 (t3)2. 1 ta 1 ) 

~.i- r X ~ I Xa,b 1+ 1 + sr X (r - t3 + V - t3 + 1) X r X ~ I Xbc I + 1 

Proof happens in the same way as that of B.c.2. 
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A.c: r > s = v if s = v thenfuI(b, c) > i if t2 = s = v (see B.b) and 

if t2 = s then t1 = t3 • 

When working out the inequality (I) taking into account the above 
data we get: 

(ta)2 xlI t3 1 
1- x-xI---

rs X (r - ta + s - t3 + 1) r 1 I xao I + 1 

(ta? 1 fa 1 1 t2=s 1 
:::::::: -( X - X I + - X I ) 
~ rs X (r - ta) + (s - ta) + 1 r 1 I xab I + 1 s 1 I xbo I + 1 

It is proved in the same way as B.c.2. 
Conclusion from A, B, and C follows that the function fIV satisfies the 

conditions (4). 
Thus as the functionflv also satisfies the conditions (1) and (2) and (3) 

fIV is a distance-function. 

V. The Alternative-Analogy-Theory as Exp01mded 
by Bochenski (see note :1) 

Important concepts are: 

a) Begriff der Bedeutung: "der Name a bedeutet in der sprache 1 den 
Gehaltf am Ding x" (symbolisch: "S(a, l,f, x)" (Denotatum concept: 
the name 'a' denotes in the language 1 the ratio f for the object x. 
Symbolic:" S(a, 1, f, x». 

b) "Die Definition fur die Mehrdeutigkeit seht, wie folgt aus: 

Ae(a, b, i,/, g, x, y) = D/ . S(a, i,j, x) . S(b, i, g, y) . I(a, b) . (x =1= y)(j =1= g) 

(The definition for one-many relations is as follows: 

Ae(a, b, i,j, g, x, y) = ... ). 

I( a, b) symbolisch vor a und b die gleiche graphische Gestalt haben. 
(I(a, b) symbolic for 'a' and 'b' which have identical shapes.) 

c) Definition of alternative analogy. 

Anp(a, b, i,/, g, x, y) = Dd . Ae(a, b, i,/, g, x, y) . [(3h) . (/ = g U h)] 

where [g U h] . x = Dj . gx v hx 
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VI. Our Interpretation of the Alternative-Theory as it is expounded 
by Bochenski, Taking I-IV into Account 

A part of the descriptions of inputs (see I) will however, when they are 
transmitted to the description-model, not only activate their own descrip
tion through the storage-program. Through medium of the description
model-program (10) it is possible that, when a certain part of the descrip
tion-model is activated (this part we call the activating) another part of 
the model can also be activated (the activated). The inputs, of which the 
respective descriptions possesse this property of thus not only activating 
these cells in the model-description in which the respective descriptions 
are stored, but also other cells from the description-model, will be a proper 
subclass of the inputs. This class we call It . The class with the respective 
descriptions of the inputs which belong to It we call B t . 

Let 'a' be an input belonging to It, let 'f' be the description which is 
activated in the description-model, which is different from the description 
of 'a' in the description-model. Let x be the input which gets as description 
'f', let 1 be the description language of the automaton. 

Then we get a certain interpretation for Sea, 1,/, x). 'a' will be a sign 
(see note 9) for the data x with the description 'f' (description relative to 
the automaton). 

As definition for analogy we then state: 

Anpla, b, 1,/, g, x, y) = D/ . Ae(a, b, 1,1, g, x, y). 

[(3h) . 1 = «I n g) U h) . (/ n g) =1= L] (L = null class) 

A possible quantification for analogy is possible here by determing the 
extent that the g C / or in other words the size of / n g, and thereby taking 
into account the extent of h. 

For this quantification our quantification function can be used (see 
sections III). 

Bochenski's alternative analogy definition forms a special place in our 
analogy interpretation viz. the case of / n g = g. In this case the proof 
that Bochenski quotes in his "Ueber die Analogie" (see note 3) for the 
soundness of the syllogism with analogous middle terms is also valid. 

(10) For more about this approach of the concepts of sign, denotatum, meaning see our 
licentiate treatise "Schets voor een gedeeltelijke simulatie van het betekenisbegrip in een 
automaton" ("Sketch of a partial simulation of the concept of meaning in an automaton"), 
and also our articles: "Esquisse d'un essai de simulation de language dans un automate en 
vue d'eclairer la notion 'signification'," from "Actes du XlIIe congres des societes de 
philosophie de la langue fran9aise" te verschijnen in augustus 1966, and "Sketch of a partial 
simulation of the concept meaning in an automaton" to appear in "Logique et Analyse." 
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VII. Comments on the Expounding of the Alternative Analogy 
Theory by Bochenski 

177 

In his cnticism of the alternative-analogy-theory Bochenski says: 
"In Folge dieser Definition ware jedes Paar von Namen analog, denn wir 
k6nnen immer einen neuen N amen in unser System einfiihren der nach 
Definition die Besagte Alternative bedeutet." ("As a result of this definition 
every pa£r 0/ names £s analogous because we can always include a new name 
in our system which according to the definition indicates the alternative 
in question".) 

We agree with Bochenski that for every g, always an 'h' or an 'f' can 
be constructed in such a way that / = g U h. This involves that for every 
name, another name can be constructed so that there will be analogy 
between the two names. However, we do not agree that between no matter 
which two names an analogy will exist in his alternative-analogy-inter
pretation, as 'a' will only be analogous with 'b' (let / be the contents of 
'a' and 'g' the contents of 'b') wheng C / (/ = g U h by analogy). And not 
with no matter which two names will the g be included in the f. Besides to 
have analogy in this definition the one-many-relation requirements must 
also be fulfilled and thus, amongst others, "Isomorphy" must exist between 
the two names, viz. [I(a, b)]. 

Another consideration which we would like to make for Bochenski's
analogy-theory is that we consider-if we disregard historical considerations 
-the demand for I(a, b) rather arbitrary for analogy. Let us assume 
~I(a, c). Let S(a, 1,/, x) and let S(c, I, g, y) and let the other conditions 
for analogy be fulfilled (amongst others / = g U h) then 'a' will not be 
analogous with 'c'. If we now however define 'd' as S(d, I, g, y) and if 
we form 'd' in such a way that I( a, d) is fulfilled, then there will be analogy 
between 'a' and 'd'. 

In both cases however the syllogism with the respective middle-terms 
will remain valid. 
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