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Although most authors agree that Hanson, Kuhn and 
Feyerabend are responsible for the introduction of the principle 
of incommensurability in the philosophy of science, they seldom 
agree about the exact content, of its meaning. In this paper I want to 
propose a definition in the form of an algorithm that captures, the 
various meanings of (in)commensurability presented in the literature. 
U sing this definition, I then want to address two questions : is an 
elementary form of comparability always possible and - knowing 
that full' comparability can never be achieved - just how far can we 
push a comparison. A pragmatic approach will be defended in these 
matters. 

2 

It seems reasonable to suppose that we arrive at the conclusion 
that two "things" 1 are incommensurable when we have tried to 
compare them and are forced to conclude that the result of the 
comparison is negative. The first part to examine is the attempt at 
comparison. What do we do when we compare two things? First of 
all, we have to agree what the two things we intend to compare, are 
supposed ,to be. Though this may seem extremely trivial, the 
examples ,that follow show this not to be the case. Having identified 
the things, we have to decide on what grounds the comparison will 
take place. In other words, a set of criteria has to be selected on 
which the comparison will be based. If all these conditions can 
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be met, the comparison can be executed. And, in the best of cases, 
we want to arrive at a single measure, allowing us to rank the things 
on a single scale. Then, and only then, we may say that one thing 
ranks higher than an other2. Formulating this procedure in terms of 
an algorithm, we arrive at the following : 

(1) identify the things to be compared 
(2) decide on a set of criteria on which the comparison will 

be based 
(3) execute the comparison 
(4) reduce to a single scale. 

Two things will be called incommensurable if the above algorithm 
fails. 

It then follows straight away that two things can be incommen
surable in various ways: we fail to identify the things, or we don't 
fid suitable criteria, or we cannot execute the comparison, and so 
on, including of course combinations of these types of failure. 

The first question to be answered obviously is : how well does 
this definition capture the various, existing interpretations of in
commensurability. I will defend my case by presenting three 
examples taken from the current literature3 . 

Example 1 : the approach of Thomas Kuhn. 

(1) Kuhn is rather clear about what the things are supposed to be : 
they are either paradigms, or in a more restrictive sense, scientific 
theories. Although these things are fairly complex objects, Kuhn 
apparently assumes that we have some intuitive notion of them. 
(2) The criterium is expressibility of both paradigms or theories in 
a common language. 
(3) The execution of the comparison consists of a point-by-point 
comparison. 
(4) The reduction to a single scale is rather unclear. Since the point
by-point comparison will produce a list of "yes" and "no", there 
must be some sort of adding rule in order to arrive at a single 
number. 
Evidence4 

: 

"The point-by-point comparison of two successive theories 
demands a language into which at least the empirical conse
quences of both can be translated without loss or change." 
(Kuhn,1970b,p.266~ 
"In applying the term 'incommensurability' to theories, I had 
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intended only to insist that there was no common language 
within which both could be fully expressed and which could 
therefore be used in a point-by-point comparison between 
them." (Kuhn, 1977, pp. 300-1). 

Kuhn holds theories to be incommensurable. For him the algorithm 
fails in its third step: the faithful and exact translatability of both 
theories in a common language is impossible, as for arguments, Kuhn 
relies on Quine's intranslatibility thesis5. The question whether 
this position makes sense, will be discussed later. 

As a side-effect of the algorithm proposed here, I would like to 
show that Kuhn himself understands 'incommensurability' incorrect 
to a certain point. Kuhn says : 

"Most readers of my text have supposed that when I spoke 
of theories as incommensurable, I meant that they could not 
be compared. But 'incommensurability' is a term borrowed 
from mathematics, and it there has no such implication. The 
hypothenuse of an isosceles right triangle is incommensurable 
with its side, but the two can be compared to any required 
degree of precision. What is lacking is not comparability but a 
unit of length in terms of which both can be measured direct
ly and exactly." (Kuhn, 1977, p. 300-1). 

I t is worth recalling here what incommensurability in the mathe
matical sense means. Two line segments - such as the side and the 
hypothenuse of an isosceles right triangle - are incommensurable if 
there is no rational number equal to the ratio of the lengths of these 
segments. If we set the length of the side of the triangle equal to 1, 
then the hypothenuse has length equal to V2, an irrational number. 
Another way of saying that two line segments are incommensurable, 
is that the following algorithm fails: 
(1) take two line segments 
(2) compare the segments as follows: set the length of one of them 

equal to 1 and determine the rational number that expresses the 
length of the other segment measured with the first one as unit 

(3) execute this comparison 
(4) rank the two lengths on the scale of rational numbers. 
Of course, I have formulated the algorithm in such a way that it is 
easily seen to be an instance of the general algorithm I have 
proposed. Kuhn is surely right in seeing a connection between his 
meaning of incommensurability and the mathematical one. But, 
there is a crucial difference. In Kuhn's sense, the algorithm will 
always fail because full translatibility can never be achieved : 



100 J. P. V AN BENDEGEM 

"Translation, in short, always involves compromises which alter 
communication. The translator must decide what alterations 
are acceptable." (Kuhn, 1970b, p. 268). 

But this is not the case in the mathematical sense. For certain pairs 
of line segments the algorithm will indeed fail, but for others it will 
work perfectly. Take e.g. a segment and its double; this gives a ratio 
of 1 to 2. Although this way seem a minor difference, I believe it 
shows that the general algorithm presented here does a good job in 
accentuating these differences. . 

Example 2 : the approach of Larry Laudan. 

The originality of Laudan's work lies in his problem solving 
approach to science. It allows him to define in a very sharp manner 
what the progressiveness of a scientific theory or a scientific research 
tradition is, an important achievement indeed. As to the 
incommensurability problem, his answer is equally important. In 
terms of the algorithm, it looks like this: 
(1) The things to be compared are scientific theories or research 
traditions. . 
(2) The criterium. will be the relative problem-solving effectiveness 
of both theories or traditions over a set of shared empirical problems. 
It is important to note here that the comparison involves only a part 
of both theories or traditions. It is not Laudan's intention to present 
a full comparability, i.e. covering th~ complete empirical domain of 
both. 
(3) The execution will consist of two steps: first, determine the set 
of shared problems and second, calculate the problem-solving 
effectiveness over this set. The second task presents no problems, but 
the first task needs some comment. To decide whether a problem is
shared by two theories, is equivalent to decide whether it is the same 
for both. In this sense, we now have to compare problems. This again 
can be presented as an instance of the general algorithm, thus (to 
avoid confusion, literals are used to indicate the steps of the al
gorithm) : 
(a) The things to be compared are problems. 
(b) The criterium consists of the formulation of the pro blem in 
a language neutral with respect to the two given languages or theories 
in which the problems are expressed. 
(c) The execution will very often be straightforward. E.g., all 
theories of light, presented in the late seventeenth century, addressed 
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the problem of reflection, which can be easily formulated in a 
neutral way as "why is light reflected off a mirror or other polished 
surface according to a regular pattern". 
(d) The reduction to a single scale is trivial, since the answer will 
be either "yes" or "no", i.e. the pro blems are the same or they are 
not. 
When this subalgorithm has run and the problem-solving effective
ness has been calculated, the last step becomes quite trivial : 
(4) rank the two numbers expressing the effectiveness on a single 
scale. 
Evidence for the main algorithm : 

" . .. the weaker claim being made is this : with respect to any 
two research traditions (or theories) in any field of science, 
there are some joint problems which can be formulated so as to 
presuppose nothing which is syntactically dependent upon the 
research traditions being compared." (Laudan, 1977, p. 144). 
"These shared problems provide a basis for a rational appraised 
of the relative problem-solving effectiveness of competing 
research traditions." (ibidem, p. 144). 

Evidence for the su balgorithm : 
"If a problem can be characterized only within the language 
and the framework of a theory which purports to solve it, then 
clearly no competing theory could be said to solve the same 
pro blem. However, so long as the theoretical assumptions 
necessary to characterize the problem are different from the 
theories· which attempt to solve it, then it is possible to show 
that the competing explanatory theories are addressing 
themselves to the same problem. " (idem, p. 143) . 

. In contrast to Kuhn, Laudan is convinced that the algorithm 
will work for certain inputs (for certain sets of shared problems) 
- in that sense Laudan's idea of incommensurability is much closer 
to the mathematical one - but, in case it doesn't a second algorithm 
is ready to take over. Its basic procedure consists in attaching a num
ber - expressing the progressiveness - to each theory or research 
tradition separately and then simply in comparing these numbers. 
In Laudan's words: 

"Now, an approximate determination of the effectiveness of 
a research tradition can be made within the research tradition 
itself, without reference to any other research tradition. We 
simply ask whether a research tradition has solved the problems 
which it set for itself; we ask whether, in the process, it 
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generated any empirical. anomalies or conceptual problems. 
We ask whether, in the course of time, it has managed to 
expand its domain of explained problems and to minimize the 
number and importance of its remaining conceptual problems 
and anomalies. In this way, we can come up with a character
ization of the progressiveness (or regressiveness) of the research 
tradition. If we did this for all the major research traditions 
in science, then we should be able to construct something like 
a progressive ranking of all research traditions at a given time." 
(Laudan, 1977, pp. 145-146). 

I assume the reader agrees with me that the above quotation can be 
rewritten as an algorithm for comparing two research traditions: 
just calculate the progressiveness of both and compare the numbers. 
One might be puzzled over the fact that a single number has to be 
arrived at, but Laudan suggests the following : 

and 

" ... progress can occur if and only if the succession of scientific 
theories in any domain shows an increasing degree of pro blem 
solving effectiveness." (ibidem, p. 68). 

" ... the overall problem-solving effectiveness of a theory is 
determined by assessing the number and importance of the 
empirical problems which the theory solves and deducting 
therefrom the number and importance of the anomalies and 
conceptual problems which the theory generates." (ibidem, 
p.68). 

So, in principle, this second algorithm would allow us to compare 
research traditions or theories even if they have completely different 
domains! 

Example 3 : the approach of Mary Hesse. 

(1) For Hesse, the things to be compared are (theoretical) terms 
in theories, e.g. mass in Newtonian and Einsteinian physics. 
(2) The criterium is the meaning of the terms, both in an extension
al and in an intensional way~ The extensional part needs no 
comment, but the intensional part is seen here as the locus of the 
term in· a semantical network (or conceptual scheme or fabric)6 
relating the term to the other terms of the theory. . 
(3) The execution of the comparison consists in checking whether 
the terms have the same meaning. This is realized .by correlating the 
term in both theories to a third term that shares properties with the 
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other two. The only constraint on this third term is that its reference 
or extension lies within the intersection of the extensions of the 
given terms. 
(4) The reduction to a single scale might be realized by introducing 
a meaning difference scale, which starts at zero if the terms are 
identical, and goes to infinity as the terms turn out to be more and 
more different in meaning. 
Evidence: 

"There are many objects which are within the reference of 
'mass' in both Newton's and Einstein's theories, where 'mass' 
is used of these objects denote it by 'massi'. Then there are 
many statements of the two theories that are logically com
parable, ... " (Hesse, 1974, p. 65). 

Hesse then introduces 'massn ' and 'masse' for mass resp. in the 
Newtonian and Einsteinian sense and states : 

"Then Newton's theory will contain a statement' ',massi" 
and "massn " are the same property', whereas Einstein's theory 
will have no use for 'massn ', and conversely ... It then follows, 
as required, that some statements containing 'mass' are logical
ly comparable in the two theories and some are logically incom
mensurable." (Hesse, 1974, p. 65). 

It must be added here right away that Mary Hesse does not believe 
tht the outcome "the terms are identical" is possible. In the best of 
cases, we will find out whether two- terms have some meaning in 
common. The following quote makes this clear: 

"There is no 'essential meaning' of a term in anyone theory 
that must survive into subsequent theories". (Hesse, 1974, p. 
65). 

In other words, together with Laudan, she endorses the view that a 
partial successful comparability is possible, whereas Kuhn believes 
that only an approximation to success is reachable. 

Summarizing, I believe I can rather safely claim that the 
proposed general algorithm captures well the different specific 
proposals that exist. The three examples also illustrate the necessity 
for keeping the general algorithm as general as it is. E.g. it is 
necessary to speak of "things" because they can be very different 
things indeed. 

3 

Having a general definition has at least one advantage : if one 
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manages to prove something about it, it is valid for all possible 
special cases. And this is· precisely the aim of this section. More 
specifically, I want to show that the idea of complete incommensur
ability is not tenable. This idea is usually associated with Paul Feyer~. 
abend and it leads of course straight to his famous "anything goes" .. 
Let me first of all try to formulate this position more clearly. Feyer
abend does not deny the possibility of comparison, for he says: 

"Quite the contrary, I tried to find means of comparing ... 
theories. Comparison by content, or verisimilitude was of 
course- out. But there certainly remained other methods." 
(Feyerabend, 1978, p. 68). 

but he claims that the comparison will always contain subjective ele
ments. In terms of the algorithm this means that the second step 
- where the criteria are introduced and justified - will to a certain 
extent be subjective: 

"Transition to criteria not involving content thus turns theory 
choice from a "rational' and 'objective' routine into a complex 
decision involving conflicting preferences and propaganda will 
playa major role in it, as it does in all cases involving arbitrary 
elements." (idem, p. 69). 

This, of course, reduces the effect of the comparison to nil. If you 
tell me that you have compared two things and you have found out 
that they are the same, then I can always criticize your criteria and 
disagree. Although I am rather sympathetic with this view, I do 
believe that it cannot be pushed to the extreme. In other words, 
there is a lower bound and the central argument is very well summa
rized by Smith: 

"If there is no way of telling whether by 'mass' a Newtonian 
means the same thing as an Einsteinian, then when the former 
assents to the sentence "Mass is a constant property of an 
object" and the latter dissents from it there is no way of telling 
whether they are even assenting to and dissenting from the same 
statement; they are talking past each other. Showing that 
statements from different theories are incompatible appears to 
involve at least the possibility of translating from one to the 
other. The possibility of translation, however, is precisely what 
incommensurability denies." (Smith, 1981, p. 8). 

What Smith, sharing his view with Shapere, tells us is this: if mass, in 
the Newtonian and Einsteinian sense are really that different, then 
why worry about the fact that no comparison is possible. It is 
obviously the case. Stated generally, we must at least start on the 
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assumption thq.t the things to be compared have something - what
ever that might be - in common in order to start worrying what it 
exactly is they have in common. In terms of the algorithm, this 
means that the two things we start with are preselected. We don't 
start with any two things you can think of. Of course it doesn't 
make sense to compare a chair with Einsteinian physics! 7 

The nice thing about the algorithm that I have proposed is, 
that this preselection can be expressed in it : 

(1) select two things 
(2) produce reasons for believing that the things have some

thing to do with one another (these reasons may be of a 
very informal nature) 

(3) examine the reasons 
(4) use a scale that consists of two labels only: "different" 

and same" and rank the two things under one of these 
headings. 

Let me call this algorithm the zero-order, algorithm. What I mean 
by this will be explained in the next chapter. Smith's argument can 
now be translated as follows : 

(T) If we want to discuss the (in)commensurability of two 
things, we must at least assume that the zero-order al
gorithm runs with success. 

(T) expresses the existence of the lower bound I referred to. Para
phrasing Feyen:.bend: "Anything goes, but (T) certainly goes." 
An additional argument - but not so strong as Smith's - can be 
invoked : suppose that (T) does not hold. It then follows that, given 
any two things, they are basically incomparable. A consequence 
thereof is that it is no longer possible to speak of, say, Newtonian 
physics as such, because Newtonian physics-at-time-t would be in
comparable to Newtonian physics-at-time-t+ 1, simply because in 
between t and t+ 1 a problem of the theory that was not yet solved 
has now been solved. Although one might argue that in principle, 
this is possible, it wo:uld make any statement in or about scientific 
theories so complex' that we would no longer be able to handle it. 
As I said, the argument is not as strong as Smith's, for one might say 
"yes, indeed, that is what the situation is like". Even if I have to 
admit this, it will still be the case that physicists in practice will 
not share this view for the simple reason that the complexity of the 
matter will force them to immobility. 

If the existence of the lower bound is accepted, it seems natural 
to ask if we can improve on it. That is the problem of the next 
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chapter. 

4 

To state the pro blem more clearly, I must invoke an analogy. 
in mathematics, there exists an algorithm to compute an arbitrary 
close approximation of '12. The algorithm looks like this : 

(1) start with a rough estimate Xo 
(2) compute xl = (x~ + 2)/2xo 
(3) use xl as a new estimate.8 

If we start with Xo = 1 and let the algorithm run once, we obtain 
xl = 1.5. Using xl as a new, better estimate, we find x2 = 1.416 
and so on. After each run of the algorithm, we obtain a better 
approximation to the value of Vi. With a slight modification, we can 
use the analogy for the general comparison algorithm. The zero
order algorithm can be compared to a rough estimate, since the 
result of a run of that algorithm is the statement whether the two 
things have something in common or not. This knowledge can now 
be used to run the algorithm once more in order to obtain a better 
approximation, i.e. to obtain more detailed information in what 
respect(s) the two things are comparable or not. But, as said, a slight 
modification must be made : if we run the zero-order algorithm once 
more, it is very unlikely that we will get better information because 
it uses only "rough" reasons and a very rough scale (just two labels) 
For a successful second run, the algorithm must be modified. 
Evidently, there are two ways to achieve this: 
(11) by sharpening the reasons on the basis of which the compari
son is to be executed 
(12) by sharpening the scale on which the results of the comparison 
are to be ranked. 
We can now speak of a first-order algorithm that is the result of a 
sharpening of the reasons and/or scale of the zero-order algorithm. 
Likewise we can talk about a second-order algorithm and so on. 
Fig. 1. shows a graphical representation of the overall procedure : 
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This will be the setting for the discussion to follow. 
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It seems reasonable to claim that an improvement in (12)
sense does not make sense if it is not accompanied by an improve
ment in (Il)-sense. What good would it do to have a very precise 
scale if I have bad reasons for ranking things on it. So any improve
ment must involve an improvement in the (Il)-sense. However an 
improvement in (II) need not entail one in (12). It may very well be 
the case that I only want to find out whether two terms have the 
same meaning or not and not how different in meaning they are, 
but that I still want to have very good reasons for deciding just 
whether they have the same meaning or not. I insist on this point 
because it shows that commensurability when it is 'fine-tuned' 
can take on two different forms: either a fine-criterion, rough-scale 
comparison, or a fine-criterion, fine-scale comparison. It may very 
well be that the first form (which is clearly weaker than the second 
form) is sufficient for practical purposes so that it is not necessary 
to go into a lengthy defence of the second form. I will not develop 
further this point but concentrate on the (II )-type of improvement. 
What will be said for (II) will at the same time be valid for (12), 
since improving a scale in the end turns down to producing criteria 
by which the scale is to be refined9 • So, the pro blem comes down to 
this: what are we to understand by "sharpening the reasons". 

An obvious interpretation is that we want more and better 
reasons, better in this sense that they must allow us to decide in a 
more precise manner how two things are to be compared. In terms 
of the Kuhnian example we want at each refinement a better trans
lation. An equally obvious drawback - and this is basically what the 
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incommensurability problem is all about - is that the more reasons 
there are, the more criticisms can be made. In the case of Laudan e.g. 
it is fairly easy to claim that the problem of the reflection of light 
is the same problem whether it is treated in a Newton's or in 
Huygens' theory. But if we try to formulate more sharply the 
reflection problem in Newton's sense may we still say that this is· 
identical to the familiar intuitive problem. This is precisely the point 
made by Thomas Nickles, when he claims that when a probl~m is 
made more precise, background knowledge is introduced thus allow
ing the criticism again that it is impossible to decide whether two 
problems are the same because the whole of the background know
ledge has to be assumed : 

"This means that we must break down the distinction between 
pro blems per se· and conditions arising out of their historical
theoretical background. We must recognize that at least some 
theoretical conditions also help to set the problem. But once 
this distinction is breached, I can see no general grounds for 
excluding any constraint on a problem solution from the 
definition of the problem~" (Nickles 1980, p. 12). 

In the extreme case, one might argue that only (T) holds, but as 
soon as we move to a higher order algorithm, the convincingness 
of the result falls away. Otherwise said, (T) represents a lower bound 
that cannot be improved. The point 1 want to make is that this is 
not the case. It seems possible to me on the one hand to agree with 
Feyerabend in saying that at the higher levels 'propaganda' sneaks 
in, and on the other hand, to claim that the comparison remains 
sufficiently convincing. The core of the argumentation is this: if 
'propaganda' or· value judgments enter the picture, there will still be 
a certain group for whom the result of the comparison remains ac
ceptable and that is precisely the group that agrees with these value 
judgments. This point is trivial of course - if someone shares my 
opinions, there is no need to convince - unless we can say something 
about the size of the group. If it could be shown that the presence 
of value judgments does not prohibit a . large group of agreeing with 
the result of the comparison, then it seems reasonable to speak of 
sufficiently convincing. Obviously some people will drop out, but 
the idea is to try to minimize the 'loss'. The question is how. 

The answer I propose, though not the only one possible, relies 
on a pragmatical view of the matter. In what follows, I will restrict 
the things to scientific theories and add some comment for the 
general case. In constructing the answer for the restricted case, my 
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preferred witness will be Nicolas Rescher. 
First of all, as trivial as it may seem, scientific theories are intended 
to be applied. And Rescher says: 

" ... at bottom the progress [of science] at issue does not pro
ceed along theoretical but along practical lines. Once one sees 
the legitimation of science to lie ultimately in the sphere of 
its applications, the progress of science will be taken to center 
on its pragmatic aspect - the increasing success of applications 
in problem solving and control." (Rescher, 1977, p. 185). 

And he goes on stating : 
"This pragmatic dimension endows science with the continuity 
it may well lack at the contextual level of the technical machi
nery of its ideas and concepts - a continuity that finds its 
expression in the persistence of problem-solving tasks in the 
sphere of praxis." (idem, p. 187). 

A beautiful illustration is presented : 
"The sending of messages is just that whether horse-carried 
letters or laser beams are used in transmitting the information." 
(idem, pp. 187-8). 

Secondly, applications usually take on very concrete forms: an 
application can result in the construction of some kind of machinery, 
or in a drastic change in an environment, and so on. Take the 
example of a bridge and suppose (as it does) that Newtonian 
mechanics explains to me why the bridge is not collapsing. Suppose 
further that there is a second theory I want to compare with 
Newtonian mechanics and suppose that it is not capable of 
explaining the 'bridge-problem'. This then is a clear and sufficient 
basis for comparing the two theories. But, the sceptic will say, why 
is thIs reasoning supposed to work for 'bridge-problems' and not for 
'reflection.:.of-light-problems'? For just one, but very important 
reason: because the bridge is used (perhaps daily) by the members 
of the culture in which the scientific subculture is imbedded. 
Furthermore, it is relatively easier to identify a 'bridge-problem' 
separately from any theory that tries to explain it. The concrete 
object, namely, the bridge, is lying there and a transition from 
Newtonian to Einsteinian physics in the scientific subculture does 
not affect that concrete thing out there. That, I take it, is the 
continuity Rescher finds so convincing. One cannot argue that by the 
transition in theories, the problem disappears. This may very well be 
the case within science itself, but it seems a pretty hard job to have 
the bridge disappear! 
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As Rescher puts it : 
"The question of technological superiority ... is something 
far less sophisticated, but also far more manageable, than the 
issue of theoretical superiority. The assessment of technical 
superiority is relatively easy vis-a.-vis that of theoretical super
iority, because the issues involved function at a grosser and 
more rough-and-ready level than those of theoretical meaning
content." (Rescher, 1977, p. 186). 

Thirdly - and this is the important step in the reasoning - I claim 
the following holds : the values shared by a certain community are 
in some way or other linked to the technical products of that 
community. I will not enter into the discussion what is the exact 
nature of this relationship, since it is suffi~ient here that some kind 
of link exists. In other words, part of the value judgments a certain 
group shares, depends on the products they commonly use - such as 
bridges, automobiles and so on - and these products in turn are the 
result of the application of certain scientific theories. 

We are now close to the answer. Suppose we want to compare 
two theories and we agree on (T). We start to refine the reasons (and 
eventually the scale) and assume that some value judgment sneaks 
in. By the fact that we belong to a certain community and therefore 
share the technical products of that community, themselves the 
result of the application of the scientific theories under discussion, 
we will share some values, according to the argument developed 
above. If the invoked value judgment lies within these values, we can 
continue to discuss. If not, of course, we are in trouble. The point 
is, that the introduction of value judgments in the comparison, does 
not automatically entail that convincingness is ·lost. In a number of 
cases it will be possible to continue. And, if we can continue, we are 
more or less guaranteed that our audience will consist of all those 
persons that share with me the specific applications connected with 
the introduced value judgment. In that sense, the 'losses' are mini
mized. 

The following consequences are straightforward: (i) the convin
cingness of the comparison algorithm depends on the familiarity 
one has with the applications involved in the comparison. If we talk 
about cars and somebody from a culture that doesn't know anything 
about cars, is presented with a comparison algorithm involving cars, 
then it need not come as a surprise that the convincingness 
disappears. (ii) The number of levels you can move up in a 
comparison will be dependent on the two theories that are being 
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compared. If e.g. the two theories have few applications or if the 
relation between the theories and the applications is very complex 
then of course the comparison algorithm will loose its convincing
ness pretty fast 1 0. (iii) As we go to higher levels, more value judg
ments will appear. Some of these will be of a strict personal nature. 
This in turn implies that my audience gets more restricted, since 
there is a low probability that I will find somebody who will exactly 
share those values. In the end, I will only be convincing myself ! 

As to the general case, matters are far more complex. Depen
ding on what the two things are, it may be more or less easy to 
execute a convincing comparison. If I have to compare two T.V. 
sets as to their performance, that is not a problem. But if I have to 
compare the term 'wave function' as it is presented in the various 
formulations of quantum mechanics, matters become very 
complex indeed. However, what can be said, is that some generali
zation of the above procedure for scientific theories is possible. If, 
in the course of a comparison, value judgments are introduced, I can 
always according to the method outlined above, try to determine 
the maximal group that accepts those jUdgments. If we would then 
be able to establish a connection between the things compared and 
some set of shared things - such as the technical products in the case 
of scientific theories - then we can try to further maximize the 
group. The difficulty lies in establishing the connection. As far as I 
can see ~ little can be said here is general. 

5 

By way of conclusion, I would like to stress the fact that al
though the aim of this paper was to show that the thesis of full 
incommensurability is not tenable, it does not follow that full 
comparability is the ultimate goal. The complexity argument that 
has been adduced for (T) applies equally well here: in order to 
reach a complete comparison, things might become so complex that 
again we are forced to immobility. I have therefore focused the 
discussion on the problem how to go from zero-level to a certain 
number of levels higher and not how to go from zero-level to the 
final level, granted that there would be one. 

A second remark of similar type concerns the fact that this 
paper has not dealt with the complementary problem, i.e. is it 
possible to decide convincingly that two things are incomparable. 
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I believe this to be an equally important problem. It might save a 
scientist a lot of time if he or she knows that an alternative theory 
that at first sight seemed comparable to his or hers own theory, 
turns out to be incomparable at -a higher level (algorithmicaUy 
speaking, that is). It is interesting to note that the discovery of the' 
incommensurability of 1 and '{2, opened up new and fascinating 
areas in the mathematical field. 

NOTES 

Aspirant NFWO 
Rijksuniversiteit Gent 

1 I use here the word 'things' to avoid any identification with a parti
cular notion such as theories, terms, problems, fields, networks and 
the like. Insofar as I am talking about things, the reasoning applies 
to objects other than the ones mentioned here as well. 

2-'Higher' does not refer here to a quality statement. It is not implied 
that the thing that ranks higher is therefore necessarily the better. 
It only refers to the fact that any scale must possess an internal order 
structure. 

3The examples are chosen so as to represent the major views in the 
incommensurability debate. A point that is not discussed in this 
paper is the problem whether other things besides the current ones, 
can be presented as input for the algorithms. In other words, we need 
not necessarily focus on theories or problems and the like. 

41 call the quotations that illustrate the algorithm 'evidence' because 
the algorithm-like formulation is mine and is extracted from the 
quotations. I also want to leave open the question whether or not the 
authors mentioned would agree with my formulation in terms of an 
algorithm. 

5 "Quine has recently concluded 'that rival systems of analytic 
hypotheses ... can confor.m to all speech dispositions within each of 
the languages concerned and yet dictate, in countless cases, utterly 
disparate translation ... Two such translations might- even be patent
ly contrary in truthvalue.' One need not go that far to recognize that 
reference to translation only isolates but does not resolve the pro
blems which have led Feyerabend and me to talk of incommensura-
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bility." (Kuhn~ 1970b, p. 268). 
Whether this support that Kuhn draws from Quine is correct, is 
open to discussion. Ian Hacking, e.g., believes that Quine's thesis 
is the opposite of the incommensurability thesis: 
"Both writers [Kuhn 'and Feyerabend] once suggested that 
incommensurability should be understood in terms of schemes and 
translation. Incommensurability meant that there would simply be 
no way of translating from one scheme to another. Thus this idea 
pulls in a direction exactly opposite to Quine's. Indeterminacy says 
there are too many translations between schemes, while incommen
surability says there are none at all.'~ (Ian Hacking, 1982, p. 59). 

6 A conceptual fabric is the term used by Barry Barnes. His approach 
is very close to Mary Hesse's. 
" ... a conceptual fabric, a structure made up of generalisations whicp. 
connect concepts into a single integrated whole." (Barnes, 1982, 
p.71). 
Compare this to what Mary Hesse says about networks: 

. "Briefly) the model interprets scientific theory in terms of a net
work of concepts related by laws, in which only pragmatic and 
relative distinctions can be made between the 'observable' and the 
'theoretical'." (Hesse, 1974, p. 4) 

7 At first sight, that is. If e.g. we take both objects as illustrations 
for a general theory of man-made artefacts, then eventually they 
might turn out to be comparable. 

8The formula in step (2) is easily discovered. If xn is the n-th esti
mate, then this means that there is an 0, such that W = xn + 0 . 
Squaring, this formula, leads to : 2 = x2

n + 2 xn 0 + 0 2 . Ignoring 
the 0 2 ~ if 0 is small, 0 2 will be much smaller - we find that 
o = (2 - x2

n )/2 xn . The new estimate x n+ 1 is precisely xn + 0 or 
xn + (2 - x2 n)/2 xn ' i.e. {x2

n + 2)/2 xn . 

9The example par excellence is the following. Suppose that a ranking 
is arrived at consisting of a pair of numbers, say (a,b). The reduction 
to a single scale involves the problem of relating <a,b> to <a',b'> 
when a < a' and b > b'. The only way out is to have some kind of 
ranking in the first and second component of the ordered couple. 
If e.g. the first component is more important than the second, the 
fact that a < a' is sufficient to justify the conclusion that 
<a,b> < <a',b'>. But this ranking is additional and needs to be 
motivated. Otherwise said, criteria are wanted. 
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10 An interesting consequence is that new theories are very difficult 
to compare. Since they are new, the number of applications will 
presumably be small and thus the comparison, according to the 
procedure outlined here, will be difficult. 
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