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1. Turing's IComputational Revolution' 

It was recently announced that 'The Modern World •.• began on 
November 10, 1619' when Desca.rtes foresaw 'the unification of all 
science' and thence the 'mathematization of the world' [15, p. 3]. 
The sober historian of mathematics will be forgiven for wishing 
to push this date back by some two millennia, but perhaps there 
is some truth to Davis and Hersh's bold thesis insofar as, prior 
to Descartes, the mathematician was allowed complete freedom to 
penetrate the mysteries of the universe, but the secrets of his 
own body and mind were deemed to lie irrevocably beyond the 
compass of his deductive tool. Like all revolutionary episodes in 
the history of ideas, Descartes' epiphany was really an act of 
defiance bordering on hubris. Far from just musing on the 
promise of analytic geometry, Descartes was challenging this 
orthodox confinement of the 'science of quantity and space' [see 
40]. Nor were the wider implications of Descartes' program (as 
spelled out in Treatise of Man and Passions of the Soul) lost on 
his con temporaries, as the immediate outbreak of the mecha­
nist/vitalist debate makes clear. Humanist prejudices die hard, 
however, and it was not until late in the nineteenth-century that 
vitalism became a spent force; now, late in the twentieth, there 
are many who anticipate the imminent vindication of the latter 
part of· what they regard as Descartes' prophetic vision, as 
mathematics extends its way into the inner recesses of the mind. 
The problem in all this, however, as this special volume attests, 
is that we have yet to reach a clear understanding on the 
nature of mathematics itself, let alone that branch of mathematics 
on which this burgeoning 'science of mind' is to be based. 

Indeed, we are only just beginning to appreciate the full 
significance of the fact that mathematics does not operate in a 
conceptual vacuum. For the manner in which a mathematician 
interprets his results is as heavily influenced by the scientific 
trends around him as the latter draw on current mathematical 
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thought. When there is a shared transformation in both mathe­
matical and scientific outlooks the result can be said to be a 
paradigm-revolution; but as philosophers of science have all too 
clearly demonstrated, a convergence in theoretical aims and 
assumptions, no matter how consistent, is by no means a guar­
antor of truth. This is especially so when the foundational issues 
on which the fledgling science rests have yet to be resolved, 
while those who, eager to get on with the business of theory­
construction, hope that future empirical discoveries will remove 
those fundamental epistemological obstacles that have troubled 
philosophers of mathematics. Certainly this has been the case 
with Artificial Intelligence (AI); for aspiring cognitive scientists 
have made free use of Church's Thesis without appreciating the 
subtlety of the problems that it embodies [see 61]. The very fact 
that AI does represent such a melding of interests entails, 
however, that the philosopher of mathematics cannot begin to 
address its foundations without broadening his scope immeasu­
rably. For computationalism quite clearly cannot be seen as an 
isolated mathematical affair; basic issues in the theory of algo­
rithms have been inextricably linked to cybernetic theories of 
action and psychological th.eories of learning: largely as the 
result of a figure who many would see as Descartes' spiritual 
heir, both in terms of his accomplishments and his breadth of 
vision. 

Certainly Turing stands out, like Descartes, as a revolutionary 
figure in the field of mathematics in which he was most involved 
(not to mention the zest for iconoclasm which he demonstrated in 
such papers as 'Computing Machinery and Intelligence'). The 
developments which Turing initiated on the basis of this compa­
rison of 'a man in the process of computing a real number to a 
machine which is only capable of a finite number of conditions' 
were in many ways foreign to the intentions of his immediate 
predecessors in recursion theory. Where they were preoccupied 
with the search for a criterion whereby the class of effectively 
calculable functions could be demarcated, Turing's version of 
Church's Thesis served as a transitional impossibility proof 
whose real significance was immediately regarded as philosophi­
cal rather than mathematical. With hindsight one can see how 
Turing's results were the product of the formalist framework in 
which they were embedded, which perhaps accounts for the 
striking promptness with which the epistemological import of 'On 
Computable Numbers' was grasped. Apart from the conception of 
mathematical propositions and truth which Turing inherited from 
Hilbert, however, our concern in this paper will not be with the 
formalist foundations of Turing's interpretation of his cryp-
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tological method for automating a class of mathematical proce­
dures (as a means of demonstrating that machines can follow a 
species of primitive 'mechanical' rule) [see 61]. Rather, we shall 
concentrate on the formalist assumptions which underpinned the 
mechanist implications that Turing sought to graft on to 
Church's Thesis, and most interestingly, the platonist conse­
quences which this had on Turing's successors. But before we 
can approach the foundational problems which have thus been 
absorbed into the fabric of AI, we must first consider briefly the 
state of the mechanist environment in which Turing found him­
self, and the manner in which this influenced his thought. 
Prior to Turing, mechanists had struggled in vain to clarify 

the relationship between the neuro-chemical operations of the 
brain and so-called 'psychic processes'. As late as 1926 Clark 
Hull was recording in one of his 'Idea Books': 

It has struck me many times of late that the human organ­
ism is one of the most extraordinary machines - and yet a 
machine. And it has struck me more than once that so far 
as the thinking processes go, a machine could be built 
which would do every essential thing that the body does 
(except growth) so far as concerns thinking, etc. And .•• to 
think thEough the essentials of such a mechanism would 
probably be the best way of analyzing out the essential 
requirements of thinking [31, p. 820]. 

But such a program was more than a century old, and for all the 
mathematical sophistication of his theories Hull conspicuously 
failed to advance matters significantly beyond that which had 
been achieved by the reductionists. The cardinal doctrine of AI 
is that Turing changed all this: to the point where Marvin 
Minsky goes so far as to dismiss this kind of 'pre-computational 
mechanism' as nothing of the kind. According to Minsky, the 
people who 

considered themselves to be mechanists tended to be some­
thing else. I don't know if there's a word for them. There 
should be - let's say simplists. Striking examples are 
people like Pavlov and Watson and the whole family of 
people who believed in conditioning as a basis for learn­
ing, the mechanical associationists. Although on the surface 
they could be considered mechanists because they seem to 
talk more openly about the mind being a machine, their real 
tr()uble is that their image of the machine is precomputa­
tional [quoted in 41, p. 71]. 
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It is noteworthy that, from the countless e~mples of 'precompu­
tational mechanists' available, Minsky should have seized on the 
one group that, if not formally allied to the Logical Positivists, 
certainly shared their anti-metaphysical ardour. The implication 
here is that AI stands diametrically opposed to behaviourism: a 
point which, as far as scientific attitudes are concerned, is 
undoubtedly the case. Indeed, what those who would see Hull as 
one of the fathers of AI overlook is precisely the fact that the 
'logic of mind' as this has developed since Turing is above all 
else 'a metaphysical doctrine' [51, p. 4]. That is, the changes 
wrought by 'On Computable Numbers' signify more than just a 
further refinement in the notion of 'machine'; herein lies the 
impetus for yet another swing in the empiricist/rationalist pen­
dulum, and yet another rehabilitation of transcendental deduc­
tion (this time under the guise of calculating the computational 
properties of mental processes). 
Just as introspectivism succeeded the mechanistic psychology 

that flourished in the middle of the nineteenth-century, so 
behaviourism mar ked a sharp reaction to the excesses that had 
developed in the former's approach to animal psychology. It was 
equally inevitable that a new school would then repudiate the 
constrictions imposed by the exclusion of mentalistic notions 
from scientific explanations of behaviour. Bruner recalls how in 
the late 1940s there was a growing 'cultural movement to change 
the image of man from a passive receiver and responder to an 
active selector and constructor of experience' [9, p. 103]. No­
where was this more clear than in Bruner's own work in percep­
tion: the so-called 'New Look' which postulated the existence of a 
'hypothesis generator' which formulates the 'prerecognitional 
assumptions' that govern perception. But the problem with this 
'Judas Eye' was the lack of a theoretical framework in which to 
probe its operations. Thus Bruner recounts how 'it was not until 
we were able to look at perception as a genre of "information 
processing" in the metaphor of a computer that we were able to 
see the . necessity its being the result of a prolonged process -
for all its phenomenal immediacy' [9, p. 82]. The significance of 
this account as far as the evolution of AI is concerned is clear: 
the pressures for a computational model of 'mental processes' 
had begun to emerge prior to the widespread awareness of 
Turing's results. As several commentators have pointed out, the 
Zeitgeist was exerting its unseen influence on several fields long 
before they became aware of their convergent interests. Indeed, 
the realization that this was the case did not occur until the mid 
19508: at roughly the time when AI was baptized as such. 
If there was an organizing principle underlying these isolated 
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movements, therefore, it lay in the anti-reductionist anImus 
which first found expression in the Gestalt theory of perception 
(but can also be discerned in the growing signs that behaviour­
ists themselves were becoming increasingly restless during the 
1930s with the sweeping proscription of mentalistic concepts). 
But having said that, the question remains whether AI is as 
conceptually divorced from behaviourism as the shift in Welt­
anschauungen might suggest. Perhaps the greatest irony in 
these developments was to be that 'the mind came in on the back 
of the machine' [48, p. 26]. For the paradigm which was to unite 
the thitherto disparate forces now banded together under the 
banner of Cognitive Science was itself the off-spring of the 
union formed between recursion theory and one of the most 
fundamental of behaviourist notions. As Minsky indicates in the 
above :passage, the 'computational revolution' was the direct 
result of Turing's conception of 'mechanical calculability'. In 
strictly mathematical terms what Turing had proved in 'On 
Computable Numbers' is that every mechanically calculable func­
tion is 'Turning-machine computable'. That is, an 'effective pro­
cedure' is an algorithm that can be so encoded (e.g. in binary 
terms) as to be machine-executable [see 61]. But for AI - as 
opposed to computer - scientists, Turing proved far more than 
this: what he really accomplished was to transform machines into 
a species of rule-following system. And following in Turing's 
footsteps, McCulloch and Pitts were to do exactly the same thing 
for the brain [see §2]. 

The manner in which Turing achieved this feat was by postu­
lating a category of meaningless (sub-) rules which could guide 
the operations of a machine and/or the brain, thereby providing 
the rudiments for a new understanding of 'machine' and thence 
the creation of artificial intelligence. The concept of machine had 
already undergone radical changes during the nineteenth-cen­
tury; whereas at the beginning of the period it had been con­
fined to the static motions dictated by Newtonian mechanics, it 
had begun to evolve by the 1870s into the teleological homeo­
static system envisaged by Claude Bernard (not to mention the 
'logical' or 'reasoning' machines conceived by Babbage and 
Jevons). There was widespread dissension at the time, however, 
as to whether machines could ever approximate self-regulating 
adaptive behaviour and thus, whether the body qua homeostatic 
system could indeed be described as a machine. The key word 
here is ever, which of course indicates that the issue was 
regarded as empirical. The obvious solution would be to 'think 
through the essentials of such a mechanism' but, in G.H. Lewes' 
words, 'An automaton that will learn by experience, and adapt 
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itself to conditions not calculated for in its 90nstruction, has yet 
to be made; till it is made, we must deny that organisms are 
machines' [38, p. 436]. This is precisely the problem which, as we 
saw above, was continuing to frustrate mechanists fifty years 
on; and indeed would have remained beyond the compass of their 
ambitions had Turing not completed the mathematical transfor­
mation of machines. What is all too often overlooked by AI 
theorists, however, is that by providing the computational means 
for overcoming the impasse in which mechanism found itself, 
Turing was committed to the very framework - as defined by its 
network of assumptions - which had created it! 

As important as the Turing-inspired 'computational shift' was 
for the evolution of AI, no less significant were the classical 
associationist assumptions which provided the means for the 
transformation of Turing's 'slave machines' into 'intelligent au­
tomatons'. If Turing's major accomplishment in 'On Computable 
Numbers' was to expose the epistemological premises built into 
formalism, so his main achievement in the 1940s was to recognize 
the extent to which this outlook both harmonised with and 
extended contemporary behaviourist thought. Thus Turing 
sought to synthesize these disparate theories so as to forge an 
internal relation between mechanical rules and learning pro­
grams. Through their joint service in the Mechanist Thesis each 
thereby served to validate the other: and the framework from 
whence each derived. It is to the latter that we must look, 
therefore, in order to understand not simply the genesis, but 
more importantly, the presuppositions of AI. For it suggests, not 
just that the significance of the computational revolution might 
not be quite so pronounced as the cognitivist assumes, but at an 
even more fundamental level, that the gulf between pre- and 
post-computational mechanism is not nearly so great as Minsky 
contends. The reason why he thinks otherwise would appear to 
be because his attention is firmly fixed on the contrast between 
behaviourist and cognitivist conceptions of intentional behav­
iour. But before accepting the radical disparity postulated here, 
it will be salutary to confirm the extent to which Turing saw 
himself as working within a broadly behaviourist framework: as 
taking the theory a step further by incorporating such 'higher 
level' activities as chess-playing and theorem-proving into the 
picture. This will enable us to see that the route leading from 
Huxley's 'sentient automatons' through Hull's 'learning machines' 
to Turing's 'learning systems' is far more direct and continuous 
than is commonly acknowledged. 
In order to understand the significance of Turing's contribu­

tion to this conceptual evolution it is important to be aware, 
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first, that the thought-experiment machines portrayed in 'On 
Computable Numbers' are not credited with ~ognitive abilities as 
such; on the contrary, they are specifically referred to as 
devoid of intelligence.' The routines which they execute are 
described as 'brute force': a reminder not just of the repetitious 
strategy they employ to solve computational problems but also, 
that they belong to the intellectual level of the brutes (with all 
the Cartesian overtones which this carries). In Turing's words, 
these machines 'should be treated as entirely without intelli­
gence'; but, he continued, 'There are indications ••• that it is 
possible to make the machine display intelligence at the risk of 
its making occasional serious mistakes' [73, p. 41]. Just as a 
student has been exposed to 'teachers l who] have been inten­
tionally trying to modify' his behaviour so that 'at the end of 
the period a large number of standard routines will have been 
superimposed on the original pattern of his brain', so too 'by 
applying appropriate interference, mimicking education, we 
should hope to modify the machine until it could be relied on to 
produce definite reactions to certain commands' [72, p. 14]. The 
key to accomplishing this feat lay in the introduction of 'learn­
ing programs': self-modifying algorithms that revise their rules 
in order to improve the range and sophistication of the tasks 
they can execute, thereby satisfying Lewes' demand by enabling 
such a system to adapt to conditions not calculated for in its 
construction. 
The ultimate philosophical issue which this argument raises is 

whether or in what sense such programs can be described as 
'learning', and if not how they can best be understood [see 58]. 
But before this problem can be explored there lies the pressing 
question of why learning should have assumed .such importance 
in mechanist thought. In mythopaeic terms the automaton only 
springs to life once it displays the ability to recognize and 
master its environment (at which point humanist anxieties in­
variably surface in the form of the creator's loss of control over 
this now autonomous being). In both physiological and psycholo­
gical terms the nature of learning was to dominate the mecha­
nist/vitalist debates during the nineteenth-century. And in 
terms of the history of AI the first and in some ways most 
potent objection raised against the Mechanist Thesis was voiced 
nearly a century before the invention of computers. In her Notes 
on Menabrea's 'Sketch', Ada Lovelace cautioned that Babbage's 
'Analytical Engine has no pretensions whatever to originate 
anything. It can do whatever we know how to order it to 
perform. It can follow analysis; but it has no power of a.ntici­
pating any analytical relations or truths. Its province is to 
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assist us in mmaking available what we are already acquainted 
with'l [5, p. 284]. As he made clear in 'Comp~ting Machinery and 
Intelligence', the crux of Turing's version of the Mechanist 
Thesis turns on the very premise which Ada conceded in the 
above passage. For 'Who can be certain that "original work" that 
he has done was not simply the growth of the seed planted in 
him by teaching, or the effect of following well-known general 
principles' [71, p. 21]. The important point is that, granted that 
the operations of a machine can be guided by rules (however 
simple these might be), it is possible to develop programs of 
sufficient complexity to warrant the attribution of intelligence. It 
was this argument which was to have so dramatic an effect on 
mechanist thought. For Turing was to insist that the essence of 
a learning program is its ability to simulate the creative aspect 
of human learning [see 73, pp. 122-3]. To serve as a defence of 
machine intelligence this argument must assume that learning 
'denotes changes in the system that are adaptive in the sense 
that they enable the system to do the same task or tasks drawn 
from the same population more efficiently and more effectively 
the next time' [65, p. 28]. On first reading this statement reads 
as little more than a strained attempt to tailor the concept of 
learning so as to mesh with the concept of 'mechanical rules'. 
For if all learning amounted to were the adaptation of something 
to its environment we should be forced to conclude not just that 
machines but indeed, all matter was capable of learning. Hence it 
would seem prima facie that Turing only succeeded in sub­
verting the concept of learning in his zeal to reduce it to a level 
commensurate with the minimal 'cognitive abilities' of his ma­
chines. But such an argument fails to do justice to the manner 
in which AI evolved from the union of mathematical and pre­
existing mechanist thought, and the extent to which the latter 
had come to dominate learning theory. Moreover, it completely 
ignores the evolution of 'machines' which underpins this outcome 
and the bearing which this had not just on Turing's thought, 
but as a result of his influence, on automata theory and thence 
AI. That is, it obscures the extent to which behaviourist presup­
positions were absorbed into the foundations of AI. 

This behaviourist orientation is particularly evident in 'Intel­
ligent Machinery', the report which Turing completed for the 
National Physical Laboratory in the summer of 1948. The purpose 
of this paper was to defend the claim that self-modifying algo­
rithms can legitimately be described as 'learning' programs. The 
opening premise recalls Lashley's theory that learning is the 
result of reflex pathways brought about by conditioning. Ac­
cording to Turing, 'the cortex of the infant is an unorganized 
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machine, which can be organized by s,uitable interfering 
training' [72, p. 16]. By enabling the system to modify its own 
rules Turing thought he had demonstrated that his machines 
could in principle simulate the formation of neural reflex arcs 
that take place during conditioning. The ensuing argument then 
expands on this notion of 'modification' in terms of the 'Spread 
of Effect' experiments inspired by Thorndike. From Turing's 
point-of-view, the most important element in this classic associa­
tionist theory is that learning does not involve conscious reflec­
tion but rather, reduces to (quantifiable) stimulus-response 
units.2 Turning explained that, in so far as 'The training of the 
human child depends largely on a system of rewards and pun­
ishments', 'It is intended that pain stimuli occur when the 
machine's behaviour is wrong, pleasure stimuli when it is par­
ticularly right. With appropriate stimuli on 'these lines, judi­
ciously operated by the "teacher", one may hope that the "char­
acter" will converge towards the one desired, i.e., that wrong 
behaviour will tend to become rare'3 [72, p. 16]. By enabling the 
system to modify its own rules, Turing thought he had demon­
strated that his machines could in principle simulate the forma­
tion of neural reflex arcs that take place during conditioning. 
The ensuing argument then expands on this notion of 'modifica­
tion' in terms of the 'Spread of Effect' experiments inspired by 
Thorndike. From Turing's point-of-view, the most important 
element in this classic associationist theory is that learning does 
not involve conscious reflection but rather, reduces to (quanti­
fiable) stimulus-response units. 2 Turing explained that, in so far 
as 'The training of the human child depends largely on a system 
of rewards and punishments', 'It is intended that pain stimuli 
occur when the machine's behaviour is wrong, pleasure stimuli 
when it is particularly right. With appropriate stimuli on these 
lines, judiciously operated by the "teacher", one may hope that 
the "character" will converge towards 
the one desired, i.e., that wrong behaviour will tend to become 
rare'3 [72, p. 17]. 

The concept of modification on which Turing placed so much 
emphasis in his 'learning'-based version of the Mechanist Thesis 
was thus directly culled from behaviourist writings: it was by 
employing 'analogues' of pleasure and pain stimuli that he hoped 
'to give the desired modification' to a machine's 'character' [72, 
p. 20]. In 'Intelligent Machinery, A Heretical Theory' he explained 
that 

Without some ... idea, corresponding to the 'pleasure prin­
ciple' of the psychologists, it is very difficult to see how to 
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proceed. Certainly it would be most natural to introduce 
some such thing into the machine. I' suggest that there 
should be two keys which can be manipulated by the 
schoolmaster, and which can represent the ideas of plea­
sure and pain. At later stages in education the machine 
would recognize certain other conditions as desirable owing 
to their having been constantly associated in the past with 
pleasure, and likewise certain others as undesirable [70, p. 
132]. 

The metaphor would now appear to be twice removed from the 
meaning of 'learning'; where behaviourists had taken the liberty 
of depicting habituation as a lower form of learning, Turing went 
a step further and added the premise that machines display 
'behaviour' which can be 'conditioned' by 'analogues of pleasure 
and pain stimuli'. Whether or not he was aware of Hull's writings, 
Turing clearly shared his conviction that 'an automaton might be 
constructed on the analogy of the nervous system which could 
learn and through experience acquire a considerable degree of 
intelligence by just coming in contact with an environment'. [31, 
p. 820]. But that is precisely a consequence of the fact that 
Turing shared the framework in which Hull approached this 
issue. 

This framework is exemplified (although not inspired by) 
Thorndike's experiments on the 'learning curve'. Thorndike de­
signed a 'puzzle box' to measure the number of times a cat 
placed inside would randomly pull on chains and levers to 
escape. He found that when practice days were plotted against 
the amount of time required to free itself, a learning curve 
emerged which fell rapidly at first and then gradually until it 
approached a horizontal line which signified the point at which 
the cat had 'mastered the task'. According to Thorndike his 
results showed how animal learning at its most basic level 
breaks down into a series of brute repetitions which gradually 
'stamp' the correct response into the animal's behaviour pattern 
by creating 'neuro-causal connections'. Repetition alone, how­
ever, does not suffice for the reinforcement of these connec­
tions; without the concomitant effects produced by punishment 
and reward new connections would not be stamped in. But why 
should such conditioning be greeted as a confirmation of the 
thesis that learning is nothing more than adaptation (cf. the 
quotation from Lewes, supra)? Foregoing discussion of the asso­
ciationist premise on which this is based, we can see that the 
answer rests on a picture of the continuum of learning, 
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with simple negative adaptation (habituation, or accommo­
dation, and tropisms, which are orien~ting responses and 
are known to be mediated by fairly simple physico-chemical 
means) at one end, and maze-learning, puzzle-box learning 
..• and ape-learning .~. in stages of increasing complexity, 
leading to human learning at the other end. The condi­
tioned response ..• falls somewhere towards the middle of 
the continuum [19, p. 180]. 

The crucial point is the idea that learning results from the 
formation of stimulus-response 'connections' that require a modi­
cum of intelligence. 4 The 'higher' forms of learning are thus 
distinguished by the complexity of the behaviour acquired 
through this process, but the cognitive abilities rendered by the 
atomic associations which form the basis for all levels of learning 
remain identical and thus provide the rationale for describing 
what had hitherto been regarded as disparate phenomena as a 
continuum of learning. 

Needless to say, this argument imparted a vital impetus to 
Turing's version of the Mechanist Thesis; for provided the 
lowest level of the continuum can be artificially simulated, there 
is no a priori reason why machines should not be capable of 
ascending this cognitive hierarchy. Moreover, it should be clear 
from the brief account presented above that this was exactly the 
theme which Turing exploited in the 1940s in his defence of 
machine intelligence. In so doing he instituted yet another and 
what he regarded as the crucial modification to this behaviourist 
theory. Prior to Turing the mechanist conception of the learning 
continuum had faced a major obstacle: on this picture the 
mastery of a concept which forms the mainstay of learning is 
rendered categorially identical to phylogenetic adaptation. The 
problem was that while Pavlov and Thorndike's conditioning 
experiments on dogs and cats marked an advance over Loeb and 
Jennings' habituation studies on caterpillars and mammalian 
eggs, it- was not at all clear how to ascend higher than this to 
the upper reaches of the continuum so as to bring the normative 
practices which characterize learning proper under this condi­
tioning umbrella. It was one thing to stipulate that by virtue of 
the continuum these neural structures must exist, but quite 
another to know exactly how they would be configured. Before 
we consider the post-computational response to this latter issue, 
however, it is important that we bear in mind some of the 
fundamental objections to this (associationist) behaviourist 
theory that have been raised. For the major question that will 
concern us in the sequel is whether Turing surmounted or 
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subsumed these problems, and to what extent this can be said to 
have impinged on AI. 

The first thing to notice is that this picture of a learning 
continuum was putatively one in which the higher forms of 
learning are built up out of simpler components. But in actual 
fact the framework evolved in the opposite direction; it was only 
by first postulating that the network of learning concepts can 
be applied in a diminished state to the descending levels of the 
continuum that the converse compositional theory could be in­
stalled. Hence the theory assumed that the family of concepts 
tied to learning are only externally related, a.nd can be hived off 
from the declining orders until the foundational level is reached 
where learning is a function of reflexive habituation. To stipu­
late with Jacques Loeb that his caterpillars 'learned where the 
light was coming from' was thus to say nothing more than that 
they had acquired knowledge about the light. On this classical 
empiricist conception 'we suppose that the organism had some 
specific experience which caused or was in some way related to 
the change in its knowledge state' [8, p. 13]. With this premise 
in place the theory could then reintroduce the various cognitive 
concepts, now hierarchically arranged, at each successive stage 
on the evolutionary scale. To understand what 'learning' in­
volves at any given stage, therefore, is to know in advance what 
cognitive abilities are possessed by the organisms in question 
(e.g. be they 'negative adaptation', 'maze learning', 'ape-learn­
ing', or 'human learning'). Otherwise the scientist runs the risk 
of misinterpreting an experiment by assigning inappropriate 
knowledge-claims to the organism in question; e.g. of supposing 
that, 'In the make-believe world of talking animals, Pavlov's dog 
might say to itself, "The bell was followed by food" and the 
giant axon of a squid might say, "Irritation of my nerve ending 
is followed by a hell of a shock'" [8, p. 14]. 

The dangers manifested by such conclusions is a consequence 
of the tendency to impute the scientist's knowledge to the 
organism under study. The problem here is not to clarify how 
the 'knowledge' acquired by the lower orders should be de­
scribed; it is to see how very misleading is the assumption that 
adaptation is coextensive with cognition. Only if one were al­
ready committed to the premise that 'experience causes a change 
in the state of knowledge •.. of the organism' [8, p. 14] could it 
be supposed that the fact that Loeb's caterpillars were attracted 
to the light signifies a change in their 'knowledge state'. But 
knowledge is not a state, much less one that is caused by 
external stimuli, or whose inception and duration can be accu­
rately measured [cf. 78, §82]. Nor is the concept of sensation 
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internally related to that of cognition in the _ manner assumed by 
the associationists. Finally, knowledge can neither be identified 
with a change in behaviour - for one can behave in a certain 
way without knowing what one is doing (as conditioning experi­
ments have so abundantly demonstrated) - nor denied on the 
grounds that no behavioural change was discernible (as those 
seasoned in dissimulation can attest). On this approach 'we infer 
someone's knowledge from inputs to him and outputs from him, 
and we infer learning caused by an experience because of 
before-to-after changes in his inferred knowledge' [8, p. 14]. To 
be sure, a change in someone's behaviour may be evidence for 
his having learnt how to <p: but the nature of this evidence is 
logico-grammatical, not inductive. What someone has learnt does 
not cause them to <p; rather it is their ability to <p that licenses 
our judgement about what they have learnt. But such judge­
ments are always defeasible: inescapable prCXlf that the relation­
ship between behaviour and learning is not one of equivalence 
or entailment. Hence the possibility that a subject may behave in 
an 'appropriate' manner without having learnt how to <p and 
conversely, have learnt how to <p and yet conceal this fact in 
their behaviour. 

Like the notion of understanding to which it is so intimately 
connected, learning is a family-resemblance concept which em­
braces a wide spectrum of activities that are loosely based on 
the attainment of an ability, not 'cortical connections'. Regard­
less of any changes that might occur in its neural map (or even, 
none at all), Thorndike's cats would still be said to have learnt 
how to escape from the box if they consistently demonstrated 
such an ability; for that is what the term means. What renders 
the so-called 'higher forms of learning' more complex is not the 
compilation of such simple skills but rather, the 'ability to 
govern one's actions according to a rule. Far from explaining, 
the continuum picture only serves to undermine the normative 
foundation on which the latter concept rests. Indeed, the theory 
could only proceed by assuming the very phenomenon which it 
had undertaken to explain. For a subject's cognitive abilities are 
displayed by what they can learn: not the reverse. The source 
of the confusion operating here stems from the initial move to 
sever the internal relation which binds concept-learning to 
understanding. Because of their preoccupation with vitalism the 
physiological mechanists had misguidedly treated the relation 
between purposive behaviour and choice as external, and follow­
ing in their footsteps, the fathers of behaviourism were to do 
exactly the same thing with the concepts of behaviour and 
learning. Moreover, they were to commit this conceptual tr~ns-
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gression in the very same manner: e.g. by confusing the ability 
to speak a language with physiological adaptation. But the 
former refers to the mastery of a concept: not the (acquired or 
unconditioned) response to a stimulus. Hence it demands the 
abilities to explain, teach, justify, correct, etc. the use of that 
concept. Without these abilities one is left, not with a 'lower form 
of learning' but rather, an activity which is categorially di­
vorced from the family of learning concepts. 
To be sure, humans do display a spectrum of learning abili­

ties, but these are not 'hierarchically' arranged and a fortiori, in 
no way a reflection of the associationist continuum picture. 
Rather, this is determined by the complexity of the skills and 
concepts that the infant, child, adult is capable of mastering. To 
extrapolate from this the premise that since apes can perform 
linguistic feats similar to the young human learner there is no 
reason why simple organisms should not be compared to the 
human foetus is to misunderstand the sense in which the lan­
guage-learning ability of apes can be compared to that of 
children. For it is only in so far as Washoe or Suzy could satisfy 
the normative criteria which license the description of a child's 
behaviour as learning that such a hypothesis applies. Without 
this basis of comparison one is left with a repetition of the 
confusions inspired by Hans the wonder horse, and recent 
behaviourist experiments in animal learning would only amount 
to examples of the sophisticated results that the dedicated 
animal trainer can obtain. But then, conditioning experiments are 
becoming increasingly out of fashion, largely because of the 
current work in animal learning. Indeed, the AI-scientist can 
happily point to all of the above criticisms as proof of the 
insuperable barriers to a behaviourist theory of learning while 
maintaining that the type of automaton established by Turing is 
categorially different from these earlier mechanist perspectives. 
The emphasis as far as Turing's learning machines are con­
cerned is on the system's ability to be guided by and modify its 
mechanical rules. Thus for the post-computationalist the mind 
emerges as the set of internal representations embodied in the 
brain and its profile is inferred from the actions brought about 
by such rules. Admittedly, the success of the theory is still to 
be deduced from observed behaviour; but the 'connections' now 
being tested are quasi-normative, not electro-chemical. 

For the radical behaviourists, learning was seen as the 
physico-chemical states that cause a subject to <p; on Turing's 
neo-behaviourist interpretation we return to mental states - now 
characterized as stages in a program - that cause a subject to <po 
The basic premise that learning and behaviour are causally 
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determined and hence a fit subject for scientific explanation was 
thus retained by Turing. Unlike Turing, cognitivists are aware 
of and anxious to overcome the philosophical dangers inherent in 
this form of strict reducibility. Their goal is not to disregard or 
eliminate the cluster of normative concepts outlined above char­
acterizing learning at the level of ordinary language but rather, 
to explain the manner in which the computational configurations 
divined by Turing guide an agent (or system's) actions at the 
sub-behavioural level. But in Turing-like fashion, they could 
only implement this strategy by relying on one of the most 
fundamental of Hilbert's assumptions. It is certainly no coinci­
dence that, despite the key role which learning theory played, 
this early phase in the development of AI should have been so 
completely dominated by mathematical logicians rather than psy­
chologists. Nor should it come as a surprise that the foundations 
of AI should be so closely bound up with one of the central 
issues in the foundations of mathematics. For at the heart of the 
cognitive enterprise lies the premise that, in so far as models 
can be mapped onto physical structures, it follows that the 
former can be said to be realized in the latter. Few present-day 
cognitivists will be aware, however, of the formalist origins of 
this idea, or the philosophical problems which it presents. Our 
task in the next two sections will be to correct this situation. 

2. ~ Logical Calculus of the Ideas Immanent in Nervous Activity' 

To understand both why Turing saw his 'learning programs' as a 
behaviourist addendum and also why his version of Church's 
Thesis had such an immediate impact on psychology, it is neces­
sary to grasp the impasse in which behaviourism found itself. 
Purposive behaviour had been defined as a consequence of 
neuro-physiological adaptation: the 'stamping in' of 'cortical 
reflexes'. This meant that 'learning' could be quantified in terms 
of the repetition of stimuli required to reinforce a given re­
sponse. But Thorndike had shown that frequency of repetition 
alone was insufficient to bring about the formation of neural 
connections: it must be supplemented by punishment and re­
ward, pleasant or uncomfortable sensations that the organism 
would associate with the stimulus in question. The problem was 
that such notions as pleasure or discomfort were worryingly 
subjective, and it was not at all clear how to define them other 
than as those physical states which an organism tended to seek 
or avoid. But this only served to raise a problem of a different 
order, for now it was manifest that the internal state of the 
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organism was crucial to the forging of stimulus-response con­
nections but not at all clear how behaviou~ism could assimilate 
this factor, having eschewed the explanatory force of 'unobser­
vables' as its guiding principle. Hence a yawning gulf appeared 
between the physiological needs of an organism and the rein­
forcement of its neural accommodation.5 To be sure, some behav­
iourists sought to circumvent this problem by postulating 'inter­
vening variables' to mediate between causes and effects (e.g. 
Hull's 'thirst drive'). But. these were seen as heuristic devices, 
and thus, eliminable. In no way were they intended to sanction 
the reintroduction of 'mental states' as a means of bridging the 
gap between the effect that an organism's internal structure had 
on its responses to its environment. 

What was needed was some means of reconciling the behav­
iourist emphasis on observational techniques with a method of 
explaining how an organism interacted with its environment. And 
it was precisely this lacuna which automata theory sought to fill. 
Following the recursive route mapped out in 'On Computable 
Numbers', 'A Logical Calculus of the Ideas Immanent in Nervous 
Activity' by Warren McCulloch and Walter Pitts must be regarded 
as one of the GedBnkenbBusteinen of AI, even though its 'bot­
tom-up' approach was almost immediately repudiated by the 
subject's founding fathers. Following Mountcastle's discovery 
that neurons are grouped vertically in cortical columns and, 
more importantly, the publication of Newell and Simon's 'Logic 
Theorist', the influence of McCulloch and Pitts' theory of formal 
neural nets began to wane in AI circles. For these reasons its 
significance is now deemed to be largely historical: an example of 
early insights and miscues, and a catalyst for subsequent devel­
opment in neurophysiology as well as AI. From a philosophical 
point of view, however, its bearing on the subsequent evolution 
of AI is far more significant. What matters to us are the assump­
tions which survived the demise of the theory of ax iomati zed 
neural nets.6 In this respect McCulloch and Pitts were framework 
builders', ranking on an equal footing with Turing and Shannon. 
Where they were so important was the manner in which they 
seized on the mechanist premises implicit in Turing's version of 
Church's Thesis. From a passing remark following a lecture by 
von Neumann it is clear that 'A Logical Calculus of the Ideas 
Immanent in Nervous Activity' was directly inspired by 'On 
Computable Numbers'.7 That is not to say that the mechanist 
import of Turing's thesis would not have been grasped without 
thei!' work; on the contrary, the epistemological pressures built 
into Turing's conceptual framework would have seen to that [see 
61]. Where McCulloch and Pitts were so important was in their 
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generalization of Turing's results: in taki~g them outside the 
narrow parameters of recursion theory and applying them to the 
neurophysiological study of purposive behaviour and the psy­
chological investigation of concept-acquisition, thereby be­
stowing a tremendous impetus to the burgeoning field of au­
tomata theory. 

To do this they literally took over Turing's picture of me­
chanical comuting machines and applied it to the brain. For 
McCulloch and Pitts' 'neural nets' are not analogues, they are 
literally a species of Turing machines: viz. 'bivalent neural 
systems' that compute recursive funGtions. Hence they are rule­
guided mechanisms of a minimal cognitive level. As in the case of 
Turing machines, it is the complexity of the neural net, with the 
number and configuration of the neurons in a net directly 
proportionate to the mental computational task involved, which 
delivers intelligence.s For the purposes of the theory the va­
riety of neurons is ignored; all that need be known about 
'idealized' neurons is that they consist of input synapses, one 
output axon, and an unanalyzed cell body. Each neuron has a 
firing threshold: the critical level of received impulses which 
triggers the firing of an ion impulse. Inputs and axons can be of 
two kinds - positive (excitatory) and negative (inhibitory) - and 
the firing threshold is the sum of these inputs. The theory 
makes the further assumption that the neurons in a net all share 
a uniform response time. A neuron fires an impulse along its 
axons at time t+ 1 if and only if the sum of the inputs reaches 
the firing threshold. The operations of each neuron can thus be 
represented as a function whose arguments are inputs Xh ... Xn at 
t and whose value is the output y at t+1; i.e. 

cp (xd t) ... Xn (t) )=y( t+ 1). 
The 'black box' of the cell body corresponds to the function cpo 
How it might actually be constituted is of no concern to the 
theory: only the nature of the rules correlating arguments with 
values that regulates its activities (infra). 

A neural net is defined as a collection of these neurons, each 
operating on the identical time scale, and connected to each 
other by (possible branching) axon outputs. Hence the total 
output of the network (z(t+l)) can be defined as a function at 
cell Ci of inputs Xl ... Xn at time t+l: 

CPi(Xl( t) ••• Xn (t) )=yi( t+ l)=z( t+ 1) 
The neural net is thus seen as a function whose arguments are 
the initial values of input fibres and output states, and whose 
value is the output state at t+1. Since (by the second axiom of 
the theory) the activity of a neuron is an 'all-or-none' affair (it 
either does or does not fire) the inputs and states of a neural 
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network can be represented in binary terms (0,1). In the case of 
a basic single-cell net consisting of two input fibres and one 
output, where the cell fires if and only if it receives an impulse 
from both inputs (simultaneously, by the first axiom), then 
(where 0 = does not fire and 1 = fires) we can formulate the 
following table: 

Xl 

o 
o 
1 
1 

X2 
o 
1 
o 
1 

YI 
o 
o 
o 
1 

But what we have here is simply the truth table for '&'. Like­
wise, the truth-table for 'v' (000, 011, 101, 111) could be used to 
represent a single-cell net which fires if either of two input 
fibres fire. The role of inhibitory impulses must also be borne in 
mind. For example, the table 

Xl 

o 
o 
1 
1 

X2 
o 
1 
o 
1 

Yl 
o 
o 
1 
o 

presents the 'idealized neural analogue' for 'p&-q'. And since it 
is possible to build up any compound truth-function from these 
elementary logical constants it follows that there is no bound to 
the higher neural circuits that can be constructed. 

The function-theoretic operations of such complex nets can be 
described by tables which map the set S of possible input fibres 
(={Sl ... Sn}) to the set Q of possible axon states (={ql ... qn}, where 
both =2n). Since at any time t each of these can be either firing 
or not firing (0 or 1), a simple net consisting of three input 
fibres (Xl,X2,xa) and two output states (Yl,Y2) can be represented 
as: 

Xl X2 Xa Yl Y2 
0 0 0 ql 0 0 
0 0 1 q2 0 1 
0 1 1 qa 1 0 
0 1 0 q4 1 1 
1 0 0 
1 0 1 
1 1 0 

S8 1 1 1 
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But a neural net does not simply map inputs onto outputs; for 
the existing axon states of the net play' a key role in the 
transformations which the net undergoes. A suitable table, 
therefore, will be one which maps inputs and axon states onto 
new axon states. In the following table we adopt the convention 
that the system receives its inputs (Sl ... Sa) serially. Note that a 
change in inp:ut does not entail a change in state; e.g. when the 
system begins from it remains in state q1 through inputs S5-S7. 

Sl 82 83 S4 S5 ss S7 Sa 

q1 q2 q4 q1 q3 q1 q1 q2 q3 
q2 q3 q1 q3 q4 q2 q2 q2 q1 
qa q4 q3 ql q3 q2 ql q4 q2 
q4 ql q2 q2 ql q3 q4 ql q3 

But this is exactly the same kind of table as can be used to map 
out Turing machines. Hence McCulloch and Pitts concluded that 
it must be possible to realize a Turing machine in a neural net. 
For a neural net is no less an automaton than a Turing machine, 
in so far as each embodies a set of recursive rules. By axioma­
tizing an 'idealized' neuronal structure they had sought to show, 
in McCulloch's words, 'that brains were Turing machines, and 
that any Turing machine could be made out of neurons' [43, p. 
155]. 

A Turing machine is essentially a finite automaton which 
scans a potentially infinite tape. Obviously, the absence of the 
latter has a significant bearing on the scope of the functions 
that can be computed in a neural net. But McCulloch and Pitts 
explained that 

every net, if furnished with a tape, scanners connected to 
afferents, and suitable efferents to perform the necessary 
motor-operations, can compute only such numbers as can a 
Turing machine [and] that each of the latter numbers can 
be computed by such a net ••.• This is of interest as 
affording a psychological justification of the Turing defini­
tjon of computability and its equivalents, Church's lambda­
definability and Kleene's primitive recursiveness: If any 
number can be computed by an organism, it is computable 
by these definitions, and conversely [44, p. 129]. 

The important point here is that, disregarding the significance 
of the tape and scanning/printing device in Turing's argument, 
both neural nets and Turing machines are instantiations of finite 
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automatons. The latter are conceived 8S '.black boxes' which 
receive inputs, have a finite number of internal states, and emit 
a finite number of outputs which depend on the automaton's 
internal state. In mathematical terms, the automaton A which 
ranges over the set of inputs S can be represented by the 
quadruple (Q,cli, qi, 0), where Q = the set of internal sets,cli= the 
function eli: Q x S -tQ (which determines the next state of A on the 
basis of the system's present state and the input), the initial 
state qi (where qiEQ), and the set of final states 0 (where 0 E Q). 
The nature of these 'internal states' will depend on the type of 
automaton under consideration. For example, the internal states 
of an artificial automaton might be the position of its cogs or 
levers; and for a natural automaton, it might be the state of 
excitation of a group of neurons. To refer to internal states as 
'black boxes' is simply to credit them with the same attributes as 
the classical metaphysicians assigned to 'properties' [see 68, p. 
63]. All we know about them is that they are the states an 
automaton is in when it executes its instructions, and that it is 
the combination of A's present state and the inputs it receives 
that determine both what act A will perform and what state it 
will next be in. In the present case the internal states will be 
n-tuples of the firings and non-firings of the neurons in a net. 
But the internal state must not be identified with that - ideal­
ized - physical structure. For given the preceding definition of 
automatons qua formal systems, it follows that multiple automa­
tons can be in the same internal state. Hence the above repre­
sents a 'neural realization' of an internal state, which can only 
be understood as such in virtue of the function-theoretic role 
which it performs vis-iI-vis inputs J outputs, and other states in 
a formal automaton. 

A Turing machine qua finite automaton can thus be repre­
sented as a pair of functions which map the cartesian product of 
internal states and inputs onto altered states and operations. 
I.e. 

M: 'Q x S -t Q 
N: Q x S -t 0 U Q 

(where 0 = {L,R,N}. If the output is 'stop' Z halts; otherwise the 
output of A causes 0 to print i and move one square left, right, 
or no squares at all on the tape.) 

. These operations can be written as a set of quintuples of the 
form 

qisjskRqI, 
where this quintuple is said to embody the rules: 

When A is in state qi and D scans Sj, D prints SkJ moves one 
square to the right, and A goes to state qt. 
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That is, the quintuple embodies two distinct kinds of rule: first, 
to do something (e.g. print i) and then, to 'change the internal 
state. But, as we have already seen, McCulloch and Pitts' neural 
nets can also be written as 

M: Q x S -t Q 
N: Q' -t 0 (where Q' is the subset of ultimate axonal outputs 
of Q). 

Hence it too can be written as a quintuple; e.g. 
qiSjqlq'mOz, 

which em bodies the rules that when the neural net is in state qi 
receiving input Sj it changes to state ql and when the ultimate 
axon outputs are in state q'm the net emits the final output oz. 

It is natural to assume that the term 'neural net' was in­
tended to refer to a unique physical structure in the brain 
(comparable e.g. to the neuron aggregates or 'nuclei' mapped out 
in topographical atlases of the brain). But neural nets, McCulloch 
repeatedly explained, are Turing machines. This is an important 
point, for there is a corresponding tendency to identify Turing 
machines with the Gedankenmaschin described by Turing (e.g. 
scanner, printer etc.). But 'Turing machine' is an abstraction: it 
refers, not to any of the physical models of Turing's argument, 
but to the 'network of rules' which could just as well be exe­
cuted by a neural net as by the 'automatic calculating engines' 
envisaged by Turing. What then can we conclude from the fact 
that one and the same function-table can be realized by both a 
neural net and a Turing machine? Clearly nothing about the 
internal constitution of either. After all, both have been ruled 
'black boxes' ab initio. All that this tells us is that the neural 
net and Turing machine (or any of the other possible realiza­
tions of that state table) all exhibit the same 'behaviour' in 
response to the same stimuli. Moreover, the theory makes no 
claims to providing a 'complete' description of the system (e.g. 
McCulloch and Pitts deliberately ignored the influence of glial 
cells); hence the neural net only aspires to furnish a partial 
description of a neural system. Which means that, not only can 
myriad systems satisfy the same table, but different aspects of 
the same system can be realized by different state tables. Most 
important of all, the argument is not confined to neural struc­
tures; the reactions of a simple organism, the operations of 
Bruner's 'Judas eye', or of a digital computer, could all be 
possible realizations, and the possible outputs might be ion 
impulses, genetic mutations, perceptions, or mechanical computa­
tions. 
It would be pointless to attack this argument on the grounds 

of its neurosphysiological naivety. As Arbib points out, the 
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theory can only be obtained 'at the cost of drastic simplifica­
tions'9 [1, p. 7]. It assumes complete synchronization of all the 
neurons, fixes the threshold of each neuron sempiternally, and it 
ignores the effects of other factors (e.g. hormones and chemi­
cals) or the possible role of the glial cells in neural activity. 
Moreover, 'A Logical Calculus of the Ideas Immanent in Nervous 
Activity' is far from being a model of perspicuity or even 
internal consistency. But the early champions of the theory were 
fully aware of and unperturbed by these shortcomings [see 74]. 
For their attention was fixed elsewhere; overlooking the neuro­
physiological distortions which ensue on such an axiomatization, 
the point was to see how one could apply Turing's argument to 
generate a recursive model of 'purposive behaviour' as mecha­
nistically conceived, thereby supplying the foundation for the 
'non-causal non-contingent' nature of purposive behaviour 
which eluded the cyberneticians and thence the computationalist 
version of the behaviourist search for a theory of learning/ad­
aptation. McCulloch and Pitts explained at the outset of 'A 
Logical Calculus of the Ideas Immanent in Nervous Activity' that 
learning is to be seen in terms of activities which 'have altered 
the net permanently'; it is an 'enduring change' to the net 
'which can survive sleep, anaesthesia, convulsions and coma' [44, 
p. 117]. (E.g. a 'reverberating loop' remains inactive until one of 
the inputs fires; thereafter it fires whenever any of the inputs 
fire.) Hence the argument offered a solution to the behaviourist 
problem of mind which managed to provide a causal account of 
the mechanics of learning while retaining the normative element 
that characterizes learning proper. And it accomplished this feat 
by focussing on the computational structure of the atoms fur­
nished by the reductionist account without committing the fal­
lacy of seeking to collapse learning into these physical elements. 

The argument presented the obverse side to the picture of 
human computation which Turing had used to explicate the 
notion of mechanical calculability in 'On Computable Numbers', 
thereby' cementing in McCulloch and Pitts' eyes the epistemolo­
gical resolution of Church's Thesis presented by Turing. Turing 
had argued for the artificial simulation of the mental states that 
occur in computing; McCulloch and Pitts offered in turn a 
mechanical theory of those mental states in virtue of the very 
fact that they could indeed, as Turing had postulated, be artifi­
cially simulated. Moreover, by interpreting the mind in these 
computational terms, McCulloch and Pitts hoped to base learning 
on the activities of the brain without succumbing to the reduc­
tionist fallacy that fostered behaviourist attempts to treat inter­
nal states as 'logical fictions'. Purposive behaviour could be 
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explained not as the sum total of the causal .operations that take 
place in the brain but rather, as the consequence of being 
guided by the recursive rules embodied in the neural nets 
governing those activities. Hence learning could be seen as the 
result of a neurophysiological adaptability whose configuration 
and transformations could be inferred from overt behaviour. 
Following the tradition of nineteenth-century mechanism the 
picture had remained thoroughly Darwinian: the 'internal states' 
regulating the adaptation of an organism were the product of an 
evolutionary process designed to sustain homeostasis. In 
Ashby's words, 'learning usually changes in behaviour from a 
less to a more beneficial, i.e. self-promoting form'. Thus, 'when 
the nervous system learns, its behaviour changes for the bet­
ter', and 'no use of any "vital" property or tendency will be 
made, and no Deus ex machina will be invoked' in computational 
explanations of 'learning'; the 'sole reason admitted for the 
behaviour of any part will be of the form that its own state and 
the condition of its immediate surroundings led, in accordance 
with the usual laws of matter, to the observed behaviour'lo [4, 
pp. 3-4, 7-8]. 

In Design for a Brain Ash by presented a series of 'idealized 
forms' of neural mechanism which, while they may not corre­
spond to any actual cell assemblies, should nonetheless enable 
us to grasp the nature of the governing principle which causes 
the 'organism as machine' to undergo changes which will ensure 
'better adaptation'. Not surprisingly, the (cybernetic) principle 
in question turns out to be that the purposiveness displayed by 
an organism must be seen as the actions of a 'stable system 
[which] has the property that if displaced from a state of 
equilibrium and released, the subsequent movement is so 
matched to the initial displacement that the system is brought 
back to the state of equilibrium' [4, p. 54]. But then, 'Once it is 
appreciated that feedback can be used to correct any deviation 
we like, it is easy to understand that there is no limit to the 
complexity of goal-seeking behaviour which may occur in ma­
chines quite devoid of any "vital" factor [4, p. 55]. That is, the 
argument applies to any automaton, be it natural or artificial, in 
as much as the principles governing 'learning' are: 

(1) Each mechanism is 'adapted' to its end. 
(2) Its end is the maintenance of the values of some essen­
tial variables within physiological limits. 
(3) Almost all the behaviour of an animal's vegetative sys­
tem is due to such mechanisms [4, p. 58]. 

Hence it must be possible, as Turing had anticipated, to con­
struct an 'artificial brain' which is capable of exhibiting the 
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same adaptability within pre-established parameters as charac­
terizes human learning systems. For 'machines With feedback are 
not subject to the oft-repeated dictum that machines must act 
blindly and cannot correct theil' errors. Such a statement iH true 
of machines without feedback, but not of machines in general' [4; 
p. 55]. 

In the late 1940s and early 19508 this argument dominated 
mechanist thought in biology, psychology, neurophysiology, and 
mathematical logic. Several symposia were held to explore the 
cybernetic interrelatedness of these (and other) fields [see 62]. 
Predominant throughout this formative pre-AI period was the 
abstract notion of an automaton which, by its very nature qua 
formal system, could be realized in myriad natural and/or artifi­
cial systems (infra). Even those who were shortly to reject 
McCulloch and Pitts' bottom-up approach were to remain faithful 
to this picture; for the immaterial, non-spatial mind is the 
archetypal 'black box'. Mechanism may have been no closer to 
analyzing its internal constitution, but they hoped at least to 
explain its operations in the above function-theoretic terms, 
where the mind's inputs are neurophysiological (viz. sensations), 
its internal states are (as yet) a mystery, and its outputs are 
those overt behavioural events which the mind causes (e.g. 
perception). The theory of formal neural nets laid no claims to 
understanding the 'stuff' of which the mind is composed, there­
fore, or exactly how, it causes bodily reactions; it sought only to 
disclose the laws governing its operations. But such a theory 
marked a significant advance in the evolution of mechanism. For 
it was no longer committed to a naive materialist reduction of 
mind to brain. The explanation of 'mental processes' on this 
approach are neither neurophysiological nor bio-chemical; ra­
ther, they are computational. The argument thus marked, not 
just a methodological revolution, but correspondingly, the 
transformation of organisms from passive into active agents. For 
on this theory the same stimulus can elicit different responses, 
depending on the system's internal state. 

The table outlined above also shows how a different state 
would have been produced had the system in a state qi been 
presented with a different stimulus. Since the relations between 
stimuli, internal states and responses can be functionally com­
puted, and the same state table can be realized by any number 
of automatons, we can now see why it follows on this theory that 
the operations of the mind can be mechanically simulated and a 
fortioz'i, that artificial finite automatons can display cognitive 
abilities. For what is the latter but another way of depicting 
input-output behaviour, (the functions which an automaton COID-
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putes)? '1'0 take but one example, the ability to speak a language 
can be measured by the number of sentences to which a speaker 
can respond appropriately, can be mechanically simulated, and 
thus, artificially realized. The effect which this argument has on 
Turing's learning thesis is immediately evident. On first reading, 
Turing's presentation of 'learning programs' has the appearance 
of a doubly strained metaphor. But McCulloch and Pitts' theory 
in effect removed the inverted commas from Turing's argument. 
For it reduced the explanation of behaviour to a level where the 
need for such commas are no longer relevant in so far as 
'pleasure' and 'pain' stimuli are themselves the target for infor­
mation-theoretic analysis. That is, they are merely those signals 
which upset the stability of a system, thereby activating the 
feedback mechanisms which restore an organism's equilibrium. 
Thus it is that repeated exposure to such conditioning results in 
the reinforcement of new cortical reflexes designed to adapt the 
organism to its environment, and the real comparison between 
human and machine learning comes down to the modification of 
neural nets versus that of 'Turing machine configurations'. 

Far from signifying the overthrowal, this may indeed begin 
to lCXJk like the refinement of behaviourism which Turing envis­
aged. For all the key notions seem prima facie to remain intact in 
the explanation of purposive behaviour in terms of stimulus­
response relations. Certainly there is no evidence in the works 
of this period that the scientists involved were intent on or 
even aware of the fact that they were undermining the behav­
iourist Weltanschauung which had recently dominated mechanist 
thought. It would, however, be misleading to construe this as 
nothing more than a species of or as mar king the transition from 
behaviourism to neo-behaviourism. It has been argued that, 
since a convincing reduction of psychological to physiological 
events has yet to be offered, 'theses about behaviorism remain 
important. Psychological concepts, complex skills, and, in a still 
more traditional terminology, mental events as occurring at least 
in other persons and other animals can be known only from 
behavioristic evidence [67, p. 284]. On this reading, the tran­
scendental deductions whereby the operations of the mind are 
inferred are transformed into hypothetico-deductions, and the 
cognitivist theory of mind qua system of recursive rules is not 
so much a departure from as a supplementation to behaviourism. 
But apart from the fact that this ignores the psychophysiological 
origins of behaviourist efforts to explain the mechanics of learn­
ing - and the consequent attempt to expand the notion of 
'behaviour' so as to encompass neurophysiological eventsll - it 
also distorts the changes which the concept of 'stimulus' was to 
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undergo. For on the classic stimulus-response account stimuli 
are those external events which impinge 'on the passive or­
ganism/agent and to which it responds. With the shift to an 
information-processing format, however, stimuli themselves be­
come those 'messages' which an organism actively seeks out [see 
83, p. 88]. Finally, such an argument overlooks the shift from 
strict to empirical reductionism which inspires computationalism, 
and runs the risk of treating the cognitivist debate between 
bottom-up versus top-down approaches as categorial rather than 
methodological. 
The crux of the computationalist theory is that both strategies 

should in principle meet in the middle; all that is at stake is the 
question of how one best proceeds in the initial stages.12 Nor is 
it a minor .point that computationalism should have been commit­
ted to this premise; not only did the evolution of AI - from 
Turing, Shannon, McCulloch and Pitts onwards - predispose the 
theory to move in this direction: it was compelled to do so in 
order to exploit Turing's computability results for a theory of 
the 'learning continuum' reformulated so as to base purposive 
behaviour on neural nets, rendering the complexity of the for­
mer a function of the latter. One of the most important problems 
- from a computationalist point of view at any rate - with 
labelling the cognitive revolution 'neo-behaviourist' is that this 
represents an attempt to reap the explanatory rewards of the 
former without embracing its mentalistic underpinnings. It is not 
enough to argue that behaviourism suffered from this glaring 
lack of a 'theory of internal states' and leave the matter at that: 
what the behaviourist seeks to coopt here lies au fond on a 
different level from the overt acts to which he longs to confine 
psychology. To be sure, the fact that they are function-theoretic 
- as opposed to functionalist - states demands the presence of a 
suitably endowed mechanism to execute this new species of 
embodied rules. But this is precisely where the neo-behaviourist 
interpretation comes unstuck, in so far as the impetus for the 
theory of mental processes is neither reductionist nor material­
ist. The thrust of Turing's thesis may well be that from the most 
elementary of effectively calculable algorithms complex recursive 
functions can be built up, but that does not entail that psycho­
logical predicates can be reduced to the neurological mechanisms 
underlying those embodied rules and representations. 

The essence of the bottom-down/top-up debate is whether it 
is more profitable to begin with the complex functions and work 
our way down from them to the sub-tasks in the algorithms, or 
whether one should begin with the axiomatized neural nets and 
seek to compose the higher functions from these computational 
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elements. The former approach may seem the more immediately 
inviting, but the latter boasts the more direct confirmability (as 
e.g. in Lettvin, Maturana, McCulloch and Pitts' 'What the Frog's 
Eye Tells the Frog's Brain'). There is a tendency, however, to 
suppose that this conflict is really that between neuroscience 
and cognitive psychology; that is, between pre-and post-compu­
tational mechanism. The one studies the activities of the neuron, 
the other the system of rules executed by the mind. Hence one ,is 
asked 

to imagine the task of trying to understand what [a com­
puter] program is doing (or attempting) in terms of a 
moment-by-moment listing of the electrical charges on all 
the thousands of transistors. ... Imagine that we had similar 
information about the physiologieal states of the twelve 
billion neurons in the human brain, each with up to five 
thousand synapses • ... This vast amount of information and 
its fantastic complexity would utterly dumbfound us; we 
could not hope to begin creating much order out of such 
vast quantities of particulate information. Rather, we would 
need some very powerful theories or ideas about how the 
particulate information was to be organized into a hierar­
chy of higher-level concepts referring to structure and 
function. ..• Many psychologists feel that their task is to 
describe the functional program of the brain at the level of 
flow-charting information-processing mechanisms. What is 
important is the logical system of interacting parts - the 
model - and not the specific details of the ~achinery that 
might actually embody it in the nervous system [8, p. 476]. 

But the bottom-up approach alluded to here was certainly not 
the conception advanced by McCulloch and Pitts; they were not 
suggesting that any knowledge of the hardware would help one 
to grasp the recursive structure of th~ software. On the con­
trary, the whole point of the 'idealized' nature of their theory 
was to mitigate against such a reading. Rather, their point was 
that one seeks to understand the computational mechanics of 
mental processes by disclosing the simplest recursive compo­
nents embodied in the nets. For example, in 'How We Know 
Universals' McCulloch and Pitts undertook to explain how 'Nume­
rous nets, embodied in special nervous structures, serve to 
classify information according to useful common characters' [43, 
p. 46]. The recognition of universals is a result of a process of 
template matching. On this model a pattern is stored in a neural 
net and incoming signals undergo a series of transformations 
which are inverse to the stored pattern. In order to recognize a 
universal (i.e. independent of particulars) the incoming signals 
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are so transformed until a match occurs, 'Which triggers that 
action which indicates what, on the molar level, we describe as 
the recognition of the universal in question. 

Unless one is careful to distinguish between pre- and post­
computational mechanism, therefore, there is a pronounced dan­
ger of confusing the bottom-up approach to the cognitive sci­
ence of mind· with central-state materialism. Nevertheless, the 
'neo-behaviourist' interpretation does draw attention to the 
point emphasized in the opening section that, barring those 
isolated psychologists consciously in search of the 'New Look' in 
theories of perception, the key protagonists of automata studies 
seemed fully at ease in a behaviourist framework. This confirms 
the significance of the conceptual environment in which compu­
tationalism was spawned and as a result, the behaviourist pre­
suppositions that were absorbed into this new theoretical set­
ting: in particular, the continuum picture of learning in terms of 
neurophysiological adaptation which seemed to harmonize per­
fectly with the mechanically calculable functions discovered by 
Turing. Hence computationalism was more than just a symptom of 
an emerging Zeitgeist: it was the natural outcome of two seem­
ingly disparate movements initiated a century before in the 
philosophies of nature and mathematics. But whether this devel­
opment resulted form the realization of a pre-established har­
mony between natural and artificial formal systems or marked 
the synthesis of fundamental misapprehensions about the norma­
tivity of mathematics which, by its very union, only served to 
entrench one another, is the ultimate philosophical issue which 
we must now address. There are substantial grounds for ques­
tioning two of the key premises operating here: viz. that rules 
can be physically embodied [see 61], and that internal represen­
tations can be said to guide purposive behaviour; our present 
task, however, is to consider the concept of 'models' whereby 
these two themes were joined. 

3. The In tel'pretation of Formal Systems 

One of the main intents of the preceding sections has been to 
clarify how the birth of AI was the. consequence of what in 
retrospect can be seen to have been more than just the fortui­
tous union of heterogeneous developments in the philosophies of 
nature and mathematics. For the former had embarked on a 
search for the mechanics of adaptation; the latter for the nature 
of mechanical procedures. It is thus little wonder that they 
should have proved to be tailor-made for one another. Without 
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the wider scope of effective procedures there would have been 
no reason to query the conventionalist terms of Church's Thesis; 
and without the effectively calculable functions furnished by 
recursion theory mechanists would likely have remained tethered 
to a crude empiricist attempt to exclude teleological considera­
tions from the explanation of behaviour (or at least disguise 
their presence - e.g. by redesignating them as 'teleonomical'). As 
a result of Turing's 'computational revolution', however, 
McCulloch and Pitts cou1d openly set out to explore the purpo­
sive character of neurophysiological adaptation without fear of 
subsiding - or being so construed - into vitalist metaphysics. To 
accomplish this mechanist reorientation they distinguished be­
tween those rules which the scientist employs· (i.e. the hypothe­
ses formulated in descriptive explanations) and those by which 
the system under study can be said to be guided. This demarca­
tion rested on an abstract model-theoretic distinction between 
the satisfaction and the embodiment of a formal system/automa­
ton. Significantly, their conceptual framework was methodologic­
ally neutral as far as the bottom-up/top-down dispute was 
concerned. Hence, when Newell and Simon repudiated McCulloch 
and Pitts' approach they nonetheless coopted the formalist 
premise which underpins the theory of formal neural networks, 
thereby enabling them to base their putative simulations of 
'general problem-solving techniques' on the distinction between 
those rules which the AI scientist employs in his cognitive 
hypotheses and those which the mind/computer can be said to 
follow or by which it is guided. 

There are two principle reasons why it is so important for the 
philosopher of AI to scrutinize these foundations of the subject 
before embarking on either a critique or contribution to its 
present theoretical state. The first is to confirm that, in so far 
as AI is the beneficiary of theories that are themselves plagued 
by philosophical controversy, there are solid grounds for pro­
ceeding with caution whatever one's scientistic predilections. 
One liability to which critics and advocates alike are prone is 
the pursuit of tangential and at times inconsequential issues. 
Popular questions such as whether computers can think or 
thinkers compute, or even more subtle inquiries into e.g. pos­
sible violations of the Homunculus fallacy, seem to offer both a 
more tractable and prima facie more relevant matter than ob­
scure deliberations on the epistemological significance of 
Turing's mechanical version of Church's Thesis, or the platonist 
ramifications of McCulloch and Pitts' subsequent application of 
his results to the general field of automata studies. But without 
a grasp of the issues involved here one will be led to overlook 
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the implications and complexity of the probl~ms contained in the 
foundations of AI; and most important, the nature of the philo­
sophical challenge posed by AI (which is nothing less than the 
question whether empirical results can be used to resolve philo­
sophical problems [see 62]). As is invariably the case with 
foundational studies, our concern here is with an assumption 
which demands close attention if one is to grasp the origins of 
the ensuing sceptical dilemma whose very presence establishes 
its gravity. In the case of AI, long before one can debate the 
merits of the 'Turning Test' it is necessary first to clarify what 
it IIleans to say that the function-theoretic rules governing the 
operations (i.e. constituting) an automaton can be physically 
embodied. 
Frequent suggestions to the contrary, it is not that neural 

nets are surrogate agents following those rules, which would 
indeed invite the necessary rejoinder that neurons cannot be 
credited with the cognitive abilities that apply to rule-following 
subjects [cf. 83, p. 14]. The matter is not quite so straight­
forward, however, when one shifts to the cognitive thesis that if 
anything is to be credited with the ability to follow rules, it is 
the mind qua automaton. To confuse the latter with neural 
assemblies would be to fall victim to central-state materialism, 
whose demise is one of the prime objectives of cognitive theo­
ries. Yet neither does the cognitivist wish to reduce the mind to 
its input-output patterns; for, contra behaviourism, the mind is 
a faculty whose inner states bear heavily on behaviour. The 
purport of the theory, therefore, is that the mind is somehow 
guided by recursive rules (programs) which are neurophysi­
ologically embodied. But even this way of presenting the theory 
is misleading, for it immediately invites the request for further 
clarification of what exactly is guided. Admittedly, some cogniti­
vists are tempted to fall back at this point on the last line of 
defence afforded by the 'black box', but it is crucial to under­
stand that, from the orthodox computationalist point of view, any 
metaphysical conundrums on this score are the product of an 
ontological presupposition which is au fond misconceived. For 
the notion of an immaterial, non-spatial substance causing the 
body's actions is a throwback to the futile attempts of both 
empiricists and rationalists to explain the interaction between 
sensations and behaviour without the requisite mathematical 
tools. 

With the advent of the computational revolution all need for a 
reified mind disappears, and in its place we can speak of the 
activities of an automaton being 'minded': 

the logic of mind is similar to the system of rules that 
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governs the operations of a digital computer and hence it 
is correct to say that a mind is 'machine-like' .... It is 
tempting to identify mind with these rules, although I 
prefer not to encourage the tendency to hypostatize which 
is often aroused by use of names such as 'the mind'. 
Instead, I will say that a necessary condition for a being to 
h.9ve a mind or to be minded is that its behaviour be 
guided by rules of a certain sort [51, pp. 2,9]. 

The notion of an immaterial mind thus turns out to be a logical 
fiction whose role was rendered otiose by the discovery of the 
systems of recursive rules that regulate the behaviour of natu­
ral and artificial automata. It might, however, appear that this 
theory still does not escape the charge of violating the 
Homunculus fallacy if it must still be possible for 'agents' (in a 
now extended sense of the term) to harbour faculties that follow 
rules of which only the cognitive scientist is aware. Further­
more, there is - from the mechanist standpoint - the danger that 
a preoccupation with language acquisition might promote an 
anthropomorphic bias which can only lead away from the con­
tinuum picture of learning/adaptation. Certainly this is one 
direction in which the theory has proceeded; particularly in the 
neo-ra tionalist investigations into transformational grammars. To 
be sure, much effort has gone into the attempt to extend the 
psycholinguistic model to isolated cases of animal learning, but 
even ij' these experiments should (in the eyes of their practi­
tioners) prove successful, it still leaves little room for any 
further movement down the scale of purposive behaviour as 
mechanistically conceived. 
This theory has already been the subject of extensive philo­

sophical critique. Following the concerted emp~ricist attack on 
his notion of 'tacit knowledge' [see 25] Chomsky sought refuge 
in the dubious notion of 'cognizing', which combined the 
agreeable property of retaining the 'structure and character of 
knowledge' with the theoretical advantage of mastering the 
complex:" 'depth rules' devised by the transformational gram­
marian [see 13, pp. 69ff]. As Baker and Hacker explained: 

The use of 'cognize' (or 'tacitly know') is only 'explained' to 
the extent that it is said to be just like 'know', except that 
one who only cognizes cannot tell one what he cognizes, 
cannot display the object of his cognizing, does not recog­
nize what he cognizes when told, never (apparently) for­
gets what he cognizes (but never remembers it either), has 
never learnt it and could not teach it, and so on. In short, 
cognizing is just like knowing, except that it is totally 
different in all respects. This is a travesty of the term 
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'know', of the introduction of technicl:lI terms in science, 
and of respectable reasoning [6, pp. 344-5]. 

There might, however, be some who (misguidedly) suppose that 
Language, Sense & Knowledge advances matters little over the 
original empiricist assault on 'tacit knowledge'. For according to 
Quine, one can only say that a subject's actions are guided by a 
rule when 'the behaver knows the rule and can state it' [55, p. 
442], In order to appreciate the full force of Baker and Hacker's 
investigation into the 'platonic mythology of rules' it is impera­
tive that we see how, while the heirs of the Logical Positivists 
repudiated the neo-rationalist notion of 'tacit knowledge', they 
did not discard the underlying notion of a system/organism's 
following 'embodied rules'. Even Quine does 'not question the 
notion of implicit and unconscious conformity to rule, when this 
a matter of fitting.' [54, p. 444] For 'the native speaker must 
have acquired some recursive habit of mind, however uncon­
scious, for building sentences in an essentially tree-like way; 
this is evident from the infinitude of his repertoire' [55, p. 443]. 
But to say that 'the mind follows a system of rules which operate 
below the level of consciousness for the most part' [51, p. 2] 
does not, as Turing demonstrated, demand a semantic sleight of 
hand in which all the attributes of conscious rule-following are 
retained in everything but name. 

The alternative computationalist solution is to divorce the 
notion of normative behaviour from that of 'tacit knowledge' as 
far as possible by interpreting changes in knowledge states in 
the cybernetic terms of feedback mechanisms outlined above [see 
23, and 20, pp. 31-2]. On this approach, the mechanist need not 
be coerced into the nebulous realm of 'cognizing' minds; for the 
whole point of the 'epistemological justification' which Turing 
presented in §9 of 'On Computable Numbers' was to reduce 
conscious rule-following to its causal components. McCulloch and 
Pitts carried his argument a step further by applying the latter 
framework to any recursive system, regardless of the possibility 
of consciousness. For it follows that, since the only constraint 
imposed on such recursive systems is that their input/internal­
state/output 'behaviour' conforms to the functions devised by 
the computationalist, there is no reason why the schema should 
be limited to man (and, perhaps, the higher animals). Lower 
creatures on the evolutionary scale, and indeed, artificial sys­
tems, can all be 'minded' in the above sense, provided they can 
satisfy the minimal cognitive demands imposed by Turing's 'me­
chanical rules'.13 But then, this still leaves open the central 
question whether, given that a scientist can construct rules 
(algorithms) to explain (predict) natural phenomena, there is any 
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sense in which the fact that one can map t.hese rules onto the 
activities of a system/organism entails that the behaviour of that 
system/organism is causally determined by those rules? That is, 
does it make sense to describe an activity as rule-governed 
when the possibility of consciously following those rules has 
been excluded ab initio, and the relation between rule and 
behaviour has in effect been rendered causal [cf. 66]? 
It must be emphasized that the problem here does not concern 

the manner in which the activities of these putatively rule-based 
systems is described (e.g. 'guided', 'governed', 'fit', and 'caused' 
have all been suggested). It is the assumption that, because 
algorithms can be mapped onto causal sequences, the latter 
mechanisms must embody the former. But what does that mean? 
The formalist response to this last question was, as McCulloch 
and von Neumann both made clear, supplied by Turing's proof 
that all effectively calculable functions are mechanically calcu­
lable and hence (by Turing's version of Church's Thesis) 
Turing-machine computable. By following in Turing's footsteps, 
McCulloch and Pitts were pursuing a conception of algorithms 
that provided the function-theoretic means for delivering the 
unified account of learning systems demanded by the continuum 
picture. For. Turing had shown that algorithms decompose into 
sets of 'meaningless sub-rules', each of which can as such be 
followed by a machine, be it natural or artificial. In other words, 
McCulloch and Pitts based the theory of formal neural nets on 
the premise that Turing had exposed the causal mechanics of 
rule-following. In Turing's case, this argument was guided by 
the primary intention of defending the possibility of artificially 
simulating a cognitive ability. But it was the preceding century 
of physiological investigations into the mechanics of learning -
i.e. purposive/adaptative behaviour - that had established the 
framework which both validated and exploited Turing's epistemo­
logical interpretation of his computability results. The next step 
was not so much to defend the further thesis that the mind is a 
Turing machine, therefore, as to reformulate what one should 
understand by the latter term. 
What one is confronted with are automata: a species of formal 

system whose characteristic axioms are: 
1) the number of units in the system is fixed in advance 
2) each unit can only be in a finite number of states 
3) the units all operate on a uniform time scale 
4) the system alters its internal state as a function of its 
present state and environment (inputs) 
5) the system emits its outputs as a function of its inputs 
and internal states. 
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In the original meaning of the term an automaton was an artefact 
which possessed the power of spontaneous or self-controlled 
movement. From the sixteenth-century onwards it was associated 
(in Gothic Romances) with the idea of a soulless man-created 
man, and by the beginning of the nineteenth-century it had 
come to refer to a human being behaving in a mechanical (i.e. 
soulless) fashion [see 14]. In 1936 Turing had sought to synthe­
size these various themes, and in their extension of Turing's 
Thesis McCulloch and Pitts had revealed that the kind of 'ma­
chine' envisaged by Turing is satisfied by any autonomous 
system which conforms to the above axioms: i.e. which is capable 
of governing its internal state transitions and outputs by con­
forming to the above function-theoretic rules. Thus, to para­
phrase GOdel's famous endorsement of Turing's Thesis, McCulloch 
and Pitts had shown that 'an automaton qua formal system is 
nothing but a mechanical procedure for producing theorems. The 
concept of formal system requires that reasoning/thinking/per­
ceiving/intending ... be completely replaced by "mechanical ope­
rations" on formulas in just the sense made clear by Turing 
machines' [76, p. 84]. 

The computationalist outlook as it now existed was still far 
removed, however, from what behavioural scientists were begin­
ning to regard as the physical reality of 'information-processing 
systems'. To meet this need the next stage in the evolution of 
Turing's Thesis was supplied by von Neumann's theory of self­
reproducing automata. This was to complete the computationalist 
response to the vitalist objection that a machine cannot repro­
duce itself, thereby bringing mechanisms full circle by return­
ing it to its original focus. The problem, in von Neumann's 
words, was that 

When an automaton performs certain operations, they must 
be expected to be of a lower degree of complication than 
the automaton itself. In particular, if an automaton has the 
ability to construct another one, there must be a decrease 
in ·complication as we go from the parent to the construct 
[74, p. 2092]. 

Bearing in mind the dictates of the continuum picture of learn­
ing/adaptation, however, one and the same theory must apply to 
natural as well as artificial automata, and it is clear in the case 
of the former that 

Organisms reproduce themselves, that is, they produce new 
organisms with no decrease in complexity. In addition, 
there are long periods of evolution during which the com­
plexity is even increasing. Organisms are indirectly derived 
from others which had lower complexity [Ibid.]. 
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Von Neumann's solution was to adapt Turing's, purely computing 
machines so as to become automata 'whose output is other au­
tomata'. To accomplish this he endowed McCulloch and Pitts' 
formal neural networks (now conceived as idealized cellular 
arrays that are- equipped with the logical connectives '&', 'v', and 
'-', are surrounded by inert cells, and whose internal states are 
determined by the present state of each cell together with that 
of its contiguous cells) with construction cells (which enable the 
automaton to change the state of its surrounding cells - e.g. by 
transforming inert cells into automaton parts and vice versa) 
and transmission cells (which, when thresholds are triggered, 
transmit messages from the control to the construction cells). 
The essence of his proof was: i) to equip an automaton (A) 

with a universal constructor which 'when furnished the descrip­
tion of any other automaton in terms of appropriate functions 
will construct that entity'; ii) introduce a 'reproducer' (B) that 
can make a copy of any such automaton description; iii) add a 
'control mechanism' which would activate each of these automata 
and then install the instruction description made by (B) into the 
automaton constructed by (A); and iv) include this control 
mechanism in the description supplied to (A) and copied by (B). 
The key to the resulting self-reproducing automaton is that it 
can, in fact, produce any automaton from the description sup­
plied to it, including itself. For the automaton operates in two 
distinct modes: it oversees the construction of a new automaton­
plus-control mechanism, and when this has been completed it 
makes a copy of the description which it attaches to the new 
automaton. The description thus performs two roles: in the first 
it issues the set of instructions which (A) follows in the con­
struction of the new automaton, and in the second all semantic 
content is ignored. Hence when supplied with a description of 
itself the automaton will first build an identical automaton, and 
when this is finished duplicate its own blueprint and attach this 
to the new automaton, thereby completing the process of self­
reproduction. 
It was inevitable that this theory should have immediately 

found favour in the fields which had prefigured so largely in 
the early stages of the modern evolution of mechanism. For von 
Neumann himself was quick to emphasize that: 

it is quite clear that the instruction ID is roughly effecting 
the functions of a gene. It is also clear that the copying 
mechanism B performs the fundamental act of reproduction, 
the duplication of the genetic material, which is clearly the 
fundamental operation in the multiplication of living cells 
[74, p. 2097]. 
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That is, the control and transmission cells can be seen to 
perform a role analogous to the higher centres and the neuro­
transmitterH in the central nervous system, and the constructor 
cells offer a schematic model of the body's various regenerative 
organs. Indeed, the theory offered an ideal model for interpret­
ing Watson and Crick's subsequent discovery of the structure of 
DNA; for von. Neumann had shown, not just that an automaton 
which contained a complete description of itself could reproduce, 
but indeed, could simulate genetic mutations if random changes 
where programmed into the cycle. Thus DNA itself could be said 
to perform the role of von Neumann's description, ribosomes that 
of the universal constructor, and protein molecules the ana­
logues - or instantiations - of the new automata constructed by 
the gene/automaton.14 

It is not difficult to explain this link to genetics: given the 
gradual transition from physiology through behaviourism to 
automata theory it was only natural that the original concern 
with the mechanics of homeostasis should be preserved through­
out and that the preoccupation with adaptation should shift from 
an individual to a species-based approach [see 83 chapter 1]. 
Furthermore, the biological application of the computationalist 
theory was self-corroborating in that it served to complete the 
continuum picture. For scientists could now maintain that 'Living 
entails perceptual creative activity; repeated making of what can 
be called choices and decisions'. And this applies to every 
automaton on the continuum, ranging from man down to the 

simplest cell [in which] the chemical processes must go on 
continually, but also must continually change. The creature 
has to adapt itself to the surrounding conditions, which are 
inevitably altering all the time ... In this endeavour we find 
a series of activities parallel to human actions. In the 
pursuit of its aim of living, every organism must search 
and decide what to do, which way to go to get what it 
needs. From moment to moment there are several possibili­
ties open to it and the choice between them is made by the 
information it already contains [84, p. 47]. 

This 'information' 
is embodied (or 'written') in the nucleotide groups that 
have survived during millions of years of natural selection. 
In the same way we can say that by organization of the 
neurons the simpler sort of 'knowledge' had been written in 
the brain long before man appeared. The 'knowledge' how 
to breathe, for instance, how to eat and to walk and to 
mate .... All the knowledge must somehow be recorded in 
the brain during the process of learning15 [84, p. 49]. 
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Only an argument which had proceeded from the assumptions 
outlined in the preceding sections could have arrived at a 
conclusion that trealed autonomic reflexes as 'knowledge states', 
and effaced the logico-grammatical distinction between instinc­
tive and normative behaviour. 

Not only had the continuum picture of learning/adaptation 
been completed: it had been further expanded in the process~ 
For mathematicians were simultaneously engaged in plotting the 
unpredictable periodic and aperiodic patterns that can be gene­
rated from elementary recursive rules. 16 Together these develop­
ments seemed to presage the immanent penetration of the secrets 
of a 'recursive universe' in which complex life forms are built up 
from basic 'cellular machines', and which can thus be seen as 
operating in a realm that is governed by recursive as opposed 
to phy sical laws. Almost immediately this inspired a widespread 
biological search for the embodied algorithms that control the 
dynamics of evolution.17 But the theory reaches even further, 
for 'the concept of computation is so universal that it can be 
used to explain all kinds of physical phenomena' as well, ranging 
from the recursive structure of a snowflake to that of nu­
cleation. 1s This signified not so much a turning as a returning­
point in the evolution of mechanism; for automata theory, as von 
Neumann conceived it, is 

the study of the fundamental principles common to artificial 
automata (e.g. digital computers, analog computers, control 
systems) and natural automata (e.g. the human nervous 
system, self-reproducing cells, the evolutionary aspects of 
organisms). Von Neumann envisaged a systematic theory 
which would be mathematical and logical in form, and which 
would be a coherent body of concepts and principles con­
cerning the structure and organization of both natural and 
artificial systems, the role of language and information in 
such systems, and the programming and control of such 
systems. The theory of automata is an interdisciplinary 
subject which combines viewpoints of logic, communication 
theory, and physiology [10, p. xxv]. 

Post-computational mechanism thus serves as the vindication -
or consummation - of the Weltanshauung inspiring its nine­
teenth-century physiological antecedents; for according to au­
tomata theory, all of nature, whether this be animate, inanimate, 
or artificial, is based on the execution of simple mechanical rules 
in the sense made clear by Turing. 
It was but a short step from here to the formal inauguration 

of 'artificial intelligence' at the 1956 Dartmouth Conference, 
instigated by McCarthy in order to distinguish his growing 
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interest in the simulation of cognitive processes from his earlier 
work in automata theory.19 Rather than scrutinizing the conse­
quences of this transition, however, the philosopher of AI's real 
concern here must be with the 'Platonic mythology of rules' that 
sustained it. But how could a theory whose empiricist origins 
were faithfully nurtured possibly be identified with the very 
standpoint that it most staunchly opposed? The answer lies once 
again in the mathematical framework which provided the founda­
tion for the post-computational mechanist conception of the 
'recursive universe'. Foremost here is the significance of 
Hilbert's epistemological outlook for the interpretation and re­
ception of Turing's thesis [see 61]. But that by no means ex­
hausts the significance of Hilbert's framework for the evolution 
of AI; for from Hilbert onwards there had been a tendency to 
confuse the application of a model with the notion of an inter­
pretation: an assumption that not only encouraged but, in fact, 
demanded a picture of the recursive structures which inhere in 
nature awaiting discovery. It is a premise which dates back to 
Hilbert's axiomatization of Euclidean geometry. In a letter to 
Frege Hilbert explains that 'every theory is only a scaffolding 
(schema) of concepts together with their necessary connections, 
and that the basic elements can be thought of in any way one 
likes' [17, p. 42]. That is, Hilbert believed that a pure geometry 
defines primitive concepts by establishing their logical form, and 
applied geometry determines their meaning by mapping them on 
to systems of objects. This left an obvious problem, however, for 
it is 'certainly confusing to say that the primitive terms can be 
defined twice' [75, p. 134]. 
The logical positivist solution was to construe Hilbert's 'impli­

cit definitions' as a species of 'pre-definition' which delimit the 
'class of interpretations'. The concept of straight line, for ex­
ample, is given different logical forms by Euclidean, Bolyai­
Lobatchevskian, and Riemannian geometry, while its meaning is 
given by models: 'If we interpret it ... in such a way that the 
term "straight line" is coordinated to the term "path of a light 
ray," all the other terms then acquire a quite definite signifi­
cance' [75, p. 133]. But then, that means that the Euclidean term 
'straight line' will mean something different depending on what 
we are measuring. Moreover, this still does not clarify the logical 
status of the proposition 'The path of a light ray is (or is not) a 
Euclidean straight line'. Waismann's response was to contend 
that 

Geometry, conceived as a body of conventions, is not as a 
priori as it seems to be; its choice is governed by empirical 
facts. On the other hand, geometry conceived as a body of 
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factual statements, based upon inductive evidence is not as 
empirical as it seems to be: it is not a naturalistic descrip­
tion of a large heap of facts obtained by measuring experi­
ments, but an 'idealised' representation like any physical 
law is: i.e. it contains a conventional element [75, p. 154]. 

But there can be no tertium datur as far as the logical grammar 
of geometrical propositions are concerned: geometry cannot be 
both a 'body of conventions' and a 'body of factual statements'. 
The tension surfacing here is the result of the Logical Posi­

tivists' attempt to salvage the distinction between 'schematic' 
and 'semantic' definitions. Were Waismann to remain faithful to 
his professed conventionalist outlook, the above argument would 
really entail that the interpretation of 'straight line' as the path 
of a light ray is nothing of the sort; rather, it is an alternative 
definition in which the path of a light ray serves as a paradigm 
for 'straight line' (in much the same way that the standard metre 
bar was originally used as the paradigm for 'standard metre'). In 
which case, the meaning of 'straight line' ('metre bar'} would 
fluctuate according to the physical behaviour of the paradigm, 
which was not at all his intention. The heart of Waismann's 
dilemma was that there must be some sense in which we can be 
certain that the shortest distance between two points - whether 
these be tables, chairs, beer-mugs, or pulsars - is a Euclidean 
straight line. What he failed to grasp is that the source of this 
certainty lies not in epistemology but rather, in the logical 
grammar of mathematical propositions. For the propositions of 
geometry are norms for describing the spatial relations that hold 
between objects; they license the inferences that one can draw 
about these spatial relations. It is the rules of Euclidean gram­
mar, for example, which determine the necessary fact that if the 
length of the segment between two points on the path of a light 
ray is a minimum, then the path of the light ray divides a plane 
into two identical halves (in all but position). The relation 
between mathematical concepts and their applications is thus 
internal: what the path of a light ray really signifies in 
Waismann's example is an application, not an interpretation of 
the Euclidean concept of straight line. 

The basic problem with Hilbert's conception is that it ren­
dered the relation between pure and practical geometry external. 
This left the Logical Positivists with the unanswerable question 
of how one could be certain that a given interpretation con­
formed to the 'logical structure of a theory'? [see 63]. To be 
sure, the platonist sees no difficulty accounting for 'the exten­
sive coincidence between the mathematician's invented world and 
the natural world' [22, p. 62]; his response is to insist that 'the 
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mathematician's imagination is an extra sens~ with which we can 
perceive the natural world. And it is an extremely efficacious 
sense, because it often perceives reality long before our senses 
do' [22, p. 4]. In other words, the platonist resorts to a mystery 
in order to explain an enigma. The great appeal of Hilbert's 
axiomatic approach was that it claimed to do away with any need 
for such a faculty of Ul'intuition. But as became clear from the 
failure of logical positivist attempts to develop this convention­
alist theory, it had left the underlying metaphysical problem 
inspiring platonist epistemology intact. On this argument, the 
mathematician tries to construct that pure geometry which will 
best satisfy the needs of science by conforming to the spatial 
reality under investigation. Thus in Der Raum Car nap covertly 
sought to reintroduce spatial relations into reality under the 
guise of the 'topological relations' with which the propositions of 
pure geometry are said to correspond [see 12y pp. 47f]. And 
therein lies the crux of the issue: by construing the meaning of 
mathematical propositions as supplied by semantic interpretation 
Hilbert had retained a descriptivist conception of mathematical 
propositions, and hence, a correspondence theory of mathemati­
cal truth. That is, he misconstrued the normative logico-gram­
matical character of mathematical propositions Bb initio, and thus 
preserved the metaphysical presupposition that (true) mathe­
matical propositions conform to how things are in the world. 

Needless to say, it is hardly possible to do justice to so 
profound an issue in so short a compass [see 60, chaps. 7-8 and 
[7] chapter VI]. What concerns us here, however, is the manner 
in which this platonist assumption was preserved in the compu­
tationalist framework. Nelson drew attention to this point when 
he clarified the 'analogy between "Animals are automata" and 
"Physical space is euclidean"': 

An automaton is a mathematical object, and this statement is 
intended to say that certain physical things satisfy certain 
mathematical relations; or, more precisely - assuming one 
were to formalize automata theory along the lines of group 
theories or geometrical theories - to say that animals are 
models of automaton formalisms [50, p. 429]. 

We can now begin to understand why, as was observed at the 
outset of this paper, cognitive science has revitalized metaphys­
ics in the philosophy of mind. In the case of automata, the 
platonist misconstrues the application of the formal system for 
what is termed a 'realization': i.e. the idea that any number of 
natural or artificial systems can be isomorphic with the formal 
system (or that the parts of a physical system can be isomorphic 
with myriad automata). In other words, the natural or artificial 



THE DAWNING OF (MACHINE) INTELLIGENCE 133 

system is said to be a physical instantiation of the formal 
system; hence its operations are literally governed by the same 
function-rules which define the automaton. From this was born 
the conception of the embodied rules which regulate the recur­
sive universe. But the point of seeing the relationship between 
automata and physical things as that of system to application is 
to recognize. that the fact that we can formulate rules for 
describing the operations of a natural phenomenon does not 
entail that those rules must somehow be present in that phe­
nomenon sub species aeternitatis. 
By overlooking this point automata theory soon found itself 

confronted with a similar dilemma to that which frustrated the 
Logical Positivists' attempts to reconcile conventionalism with 
the interrelatedness of mathematical truths. Let us suppose that 
it were possible to examine the operations of a neural assembly 
that had been mapped onto a neural net, and discrepancies were 
observed between the behaviour of the net and the rules of the 
automaton. Only two options would be open to the computation­
alist; either he could conclude that there must have been some 
error in the observations; or else he must accept that one can 
never be certain that the embodied rules governing the opera­
tions of a system have been discovered. But now, if he takes the 
first route he runs the risk of lapsing into armchair dogmatism; 
certainly no scientist wants to have the scope of his findings 
fixed in advance. But if he opts for the latter alternative he is 
condemned to suffer the sceptical consequence that one could 
never be certain that the algorithms which control nature have 
been correctly identified. In neither case is it clear what contri­
bution automata theory has to make to neurophysiology, other 
than heuristic. Unless, of course, one were to return to the very 
picture which these developments were intended to displace, and 
maintain that 'the automata theorist's imagination is an extra 
sense with which he can perceive the natural world. And it is an 
extremely efficacious sense, because it often perceives reality 
long before our senses do.' 

Such a move would not, in fact, be at all out of place, in so 
far as the underlying metaphysical presupposition inspiring 
platonist epistemology has also been preserved: here under the 
conflation of rules with causal mechanisms. For the mechanisms 
of rules embedded in the physical instantiations of natural 
automata are seen as operating on their own accord. That is, the 
rules determine on their own what shall constitute their applica­
tions. But this completely undermines the normative basis for 
the concept of rules: the ability to instruct, explain, correct, 
justify etc. one's actions by reference to the expression of the 
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rule. Without the possibility of possessing and displaying these 
abilities one has, not rule-governed actions but instead, causes 
and effects [7]. Rather than pursuing the logical grammar of 
rule and rule-following any further, however, our chief concern 
at this point must be to clarify the conceptual pressures which 
induced such a transgression. For as has been stressed 
throughout, automata theory represented the culmination, not 
the (mis)appropriation of Turing's Thesis. The fundamental 
premise operating here is not just that mathematicians can only 
develop (algorithmic) models of natural phenomena if the recur­
sive rules which they employ are isomorphic with those embodied 
in the organism; more importantly, it was assumed that Turing's 
'mechanical rules' explain exactly how this could be the case. It 
is no surprise that the two themes should have proved so 
complementary; for both had evolved from the same source. It is 
precisely because of this harmony that the theory has proved so 
attractive, and so damaging to our understanding of the nature 
of this mathematical achievement and the foundations of AI. 

As Wittgenstein demonstrated in [79] and [81], the fact that 
rules can be mechanized does not entail that those rules are 
mechanical [see 61]. The danger here is to suppose that because 
recursive rules can be encoded in causal sequences this signi­
fies that the latter constitute a 'representation' of the former. 
But the shift from encoding to embodying marks a categorial 
departure to causal domains .from whence there can be no return 
to normativity. The point of emphasizing this distinction is to 
clarify that the relation between a rule and the actions which 
conform with it is internal, whereas in causal situations the 
relation between two events is strictly external. Hence an ac­
count of the machine can only explicate why it produced its 
results: not whether or not these were correct. Only the rules 
that have been encoded can establish this, and it is for that 
reason that they are antecedent to the machine's operations. 
That is, they establish the criteria which determine when one 
shall say that the machine is performing properly or malfunc­
tioning. Turing had thus misconstrued rule-following as a (cy­
bernetic) mechanism. The 'instructions' in his machine programs 
are certainly presented so as to look like rules, but they ac­
tually function as descriptions of the machine's printing and 
transit devices. And this has nothing whatsoever to do with 
rule-following; it simply shows how to break down a complex 
mechanical action - e.g. registering twice as many 'ls' as were 
originally configured on a tape - into its sub-components. 
Moreover, the terms chosen here are entirely apposite, for the 
latter are indeed subject to 'breakdown', but not to negligence, 
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mental lapses, or misunderstandings. Henc.e they are immune 
from error, but not because they are infallible; for to be capable 
of making mistakes once again presupposes rule-following abili­
ties. 

One cannot emphasize enough the importance of Turing's 
demonstration that, given their (binary) encodability, recursive 
functions are ·ideally suited to mechanical implementation. But to 
mechanize rule-governed actions is to substitute, not subsume. 
It is to develop causal mechanisms that can greatly facilitate the 
much more tedious process of someone's applying those rules. 
But that is no basis for the assumption that, because those 
causal mechanisms can generate patterns that are isomorphic 
with natural structures, the latter - any more than the former -
are recursive. None of the significance of these discoveries has 
been saerificed by this critique, however; only the manner in 
which it is to be understood. For the essence of algorithms - as 
Turing did indeed show - is that they can be so easily mecha­
nized. Hence, thanks to the aid of communications engineers, 
mathematicians have been able to play so prominent a role in 
modern physics and biology. Whether their impact on psychology 
has been quite so beneficial remains a moot point, to be pursued 
elsewhere. Bui no such doubts could be expressed about the 
relevance of the study of algorithms vis-a-vis computer science. 
It is the significance of this work for AI and thence philosophy 
simpliciter that is a far more problematic issue. For there are 
two different albeit interrelated questions involved here which 
post-computational mechanism has brought to the fore: viz. the 
nature of 'computer simulations' and of philosophical problems. 
The most pressing issue facing the philosophy of AI is to clarify 
why it is that the former cannot be used to resolve the latter. 
And the first step is to trace the origins of the premise that 
such could indeed be the case back to the assumption that 
machines are capable of learning. 
As we saw in §1, the crux of Turing's version of the Mechanist 

Thesis was that the shift from 'brute force' to 'learning pro­
grams' signified the advance from 'slave' to 'intelligent' ma­
chines. But the basis for this argument was to be found in the 
continuum picture of learning/adaptation, which Turing under­
took to reformulate by substituting computability theory's re­
cursive networks of 'mechanical rules' for behaviorism's causal 
networks of stimulus-response connections. By proceeding from 
the same presuppositions, however, Turing was induced to com­
mit the very conceptual transgression which he sought to avoid: 
viz. to misconstrue causal sequences for normative acts. For it is 
no more possible - on logical grounds - to organize all of nature 
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on the ability to follow or be guided by simple 'mechanical' rules 
than on the habituation of an organism to 'its environment. In 
the case of the latter thesis we are confronted with an initial 
misconception of knowledge from which ineluctably flows the 
violations of the logical grammar of purpose, choice, and learn­
ing which Turing inherited from behaviourism. In the case of the 
former it is the misconception of rules (and information) which 
leads to the violations of purpose, choice, and learning that were 
entrenched in the foundations of AI. This only served to embel­
lish even further the Cartesian assumption that 'the mind of 
each human being forms a region inaccessible to all save its 
possessor .... His neighbor's knowledge of each person's mind 
must always be indirect, a matter of inference' [77, p. 1]. To be 
sure, the tools may have changed, but the picture underpinning 
the shift from introspectivism to the modeling of internal repre­
sentations has remained remarkably constant. Indeed, it is a 
picture which inspired the dreams of mathematicians long before 
Descartes fell under its spell. 

York University (Canada) 

NOTES 

1. Peirce was to develop this theme in several important 
papers on 'logical machines' [see 35]. I am indebted to 
Kenneth Ketner for drawing this to my attention. 

2. It is frustrating that Turing offers no clue to the source of 
his information on learning theory; the sole references listed 
are to Church's 'An Unsolvable Problem of Elementary Num­
ber Theory', GOdel's 'On Formally Undecidable Propositions of 
Principia mathematica', and 'On Computable Numbers', even 
though the paper has relatively little to do with recursion 
theory. 

3. As this passage makes clear, there is no evidence to sug­
gest that Turing was aware of Thorndike's findings in the 
1930s that punishing a response in order to weaken it is less 
effective than rewarding it so as to strengthen it. As far as 
Turing was concerned, 'Pleasure interference has a tendency 
to fix the character, i.e., towards preventing it changing, 
whereas pain stimuli tend to disrupt the character, causing 
features which had become fixed to change, or to become 
again subject to, random variation' [72, p. 17]. 

4. The issue is more complicated than this suggests, but in 
general, one can say that 'to refer to an action as intelligent 
was in general understood as indicating that its performance 
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showed some beneficial effect of past experience' [9, p. 23]. 
5. In The Organization of Behaviour Hebb argued: 'In mammals 

even as low as the rat it has turned out to be impossible to 
describe behavior as an interaction directly between sensory 
and motor processes. Something like thinking, that is, inter­
venes. "Thought" undoubtedly has the connotation of a 
human degree of complexity in cerebral function and may 
mean too much to be applied to lower animals. But even in 
the rat there is evidence that behavior is not completely 
controlled by immediate sensory events: there are central 
processes operating also' [24, p.xvi]. 

6. That is, as far as the early history of AI is concerned; the 
theory remains a subject of lively interest, however, for 
learning theorists. Cf. in particular [21]. It is also making 
something of a comeback in computational studies of 'pre­
programming'; cf. [59]. 

7. In the discussion which followed von Neumann's reading of 
'The General and Logical Theory of Automata' at the Hixon 
Symposium, McCulloch revealed: 'it was not until I saw 
Turing's paper that I began to get going the right way 
around [in his efforts to develop a theory of human com­
putation], and with Pitts' help formulated the required lo­
gical calculus. What we thought we were doing (and I think 
we succeeded fairly well) was treating the brain as a Turing 
machine ...• The delightful thing is that the very simplest set 
of appropriate assumptions is sufficient to show that a: 
nervous system can compute any computable number. It is 
that kind of a device, if you like - a Turing machine' [32, p. 
32]. 

8. It is interesting to note that, according to Granit, 'the more 
complex the function defined, the more neural space it seems 
to occupy in all dimensions' [20, p. 58]. 

9. Cf. Poggio and Koch: 'neurons are complex devices, very 
different from the single digital switches as portrayed by 
McCulloch and Pitts [44] type of threshold neurons. It is 
especially difficult to imagine how networks of neurons may 
solve the equations involved in visual algorithms in a way 
similar to digital computers' [52]. 

10. cf. Lashley's opening statement in 'The Problem of Serial 
Order in Behavior', which summarized the guiding spirit of 
the Hixon Symposium: 'My principal thesis today will be that 
the input is never into a quiescent or static system, but 
always into a system which is already actively excited and 
organized. In the intact organism, behavior is the result of 
interaction of this background of excitation with input from 
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any designated stimulus. Only when we c,an state the general 
characteristics of this background of excitation, can we 
understand the effects of a given input' [37, p. 112]. 

11. A precedent established by Donald McKay in [46]. In [47] 
McKay explained that, 'the term "behaviour" has a special 
psychological use which would here be slightly question­
begging,and may have caused some confusion. I should 
make it clear, therefore, that I used it in ['Mindlike Behav­
iour in Artefacts'] to refer non-committally to all that goes 
on in an artefact, internally and externally - as in ordinary 
usage where one speaks of the "behaviour" of a physical or 
mathematical system' [po 62]. 

12. Dennett explains: 'both strategies ought to work in principle, 
because both ought to end up having completed exactly the 
same task. In the end both sides want to understand the 
relationship between the brain and the mind. And you can 
either start with the mind and work down, or you can start 
with the bits of brain and work up. So if you compare this 
with the analogy of building a trans-continental railroad, 
you do start at both ends and plan to meet somewhere in the 
middle. I would bet, however, that most of the track is going 
to be laid by the people who are working from the top down, 
rather than from the bottom up. For a very simple reason: 
top-down, is much easier, as it turns out' [16, p. 69]. 

13. But cf. Nelson, who insists that 'a being has a mind if and 
only if its body or certain body parts are guided by for­
mally distinct rules (essentially of a nondeterministic finite 
automaton) of a complexity sufficient to account for inten­
tionality, and it is capable of conscious feeling' [81, p. 10]. 

14. Young explains: 'The making of each protein is organized by 
a section of the information in the DNA, or gene, a page in 
the instruction book, which is first 'transcribed' (as the 
biochemists say) into a copy written in a slightly different 
code in molecules called messenger RNA (ribonucleic acid). 
This' transcription is done by special enzymes called RNA 
polymerases which move along the stretch of DNA "reading 
off" the bases to make the RNA copy molecule. This molecule 
then moves through the cell to one of the protein-making 
machines, called ribosomes. These have further special en­
zymes which 'translate' the information in the RNA to organ­
ize the making of a new protein molecule' [84, pp. 35-6]. 

15. Young further explains: 'This selective activation of certain 
of the genes is the fundamental basis of the process of 
adaptation to environment, which is an essential part of all 
living. The DNA carries the information about the various 
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things that the organism can do. By responding suitably to 
the surroundings each bacterial cell then selects which of 
the possible proteins it shall make. The particular combina­
tion chosen will depend on the surroundings and on the 
genetic make-up and past history of that particular cell .... 
In this process of selection a cell can be said to be using 
the DNA code for communication about the environment, as 
we use the words of language .... This process of learning is 
the response to the environment that is particularly charac­
teristic of man' [84, pp. 37-8,42]. 

16. Cf. in particular Ulam's work on 'recursively defined geomet­
ric objects' and Conway's game of 'Life'. Both of these so­
called 'simulation games', their relation to von Neumann's 
work in self-reproducing automata, and the connection with 
genetics are summarized in [53]. 

17. A development, interestingly, which Turing once again an­
ticipated towards the end of his life; this time, in his studies 
in embryology. 

18. Thus Brian Hayes 'used the computational metaphor to ex­
plain how molecules of water "know" to form "the elaborate 
symmetries of a snowflake.'" On this account "'There is no 
architect directing the assembly ... and the molecules them­
selves carry within them no template for the crystalline 
form." Instead ... the snowflake works like a cellular automa­
ton. "Pattern on a large scale emerges entirely from the 
short-range interactions of many identical units. Each mole­
cule responds only to the influence of its nearest neighbors, 
but a consistent arrangement is maintained throughout a 
structure made up of perhaps 1020 molecules." To see how 
this can be explained computationally, "im~gine that each 
site where a molecule might be emplaced is governed by a 
rudimentary computer. As the crystal grows, each computer 
surveys the surrounding sites and, depending on its find­
ings, determines by some fixed rule whether its own site 
should be occupied or vacant'" [quoted in 34, p. 81]. 

19. Cf. [41, chapt. 5]. McCorduck recounts the interesting fact 
that, while 'In a logical genealogy, Turing wo[u]ld be central 
... Turing's work had practically no influence on most people 
at the Dartmouth Conference. For inst~nce, Minsky felt him­
self much more influenced by McCulloch and Shannon (espe­
cially Shannon's early chess paper); Simon considered 
Turing of no particular influence on his work' [po 95 fn. 1]. 
What this actually reveals is the speed with which Turing's 
ideas were assimilated. But as the preceding sections (and 
[61]) should make clear, the real danger in such attempts to 
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locate the influence of key figures is that it encourages one 
to over look the overriding importance' of the conceptual 
pressures created by the frameworks in which they ope­
rated. 
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