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Introduction 

A close and careful study of the history of mathematics provides 
evidence that mathematical progress is not necessarily linear or 
continuous; nor is it always evolving in precise logical steps, 
according to the rules of logic. Indeed, logic itself has evolved 
significantly since the days when Kant pronounced it to be a 
completed science, finished and in its final form with the pre
sentation of Aristotle's Organon (see Kant, K.d.r.V., B viii). 

In the last years of the nineteenth century and the early 
years of our century, philosophers of mathematics, many of them 
trained in mathematics or the physical sciences, sought to un
derstand mathematics in a Kantian sense, that is, as a completed 
body of knowledge, one which did not, however, develop dynam
ically in time, but which, rather, developed statically, in logical 
space, from Euclidean-like axioms, into Euclidean-like theorems 
according to the rules of logical inference. By 'Euclidean-like' 
here, I do not intend to suggest that these late nineteenth and 
early twentieth-century philosophers, among them such crucial 
figures as Hilbert, Frege, Peano, or Russell, were unaware of the 
existence or importance of non-Euclidean geometries (for indeed, 
Russell's 1897 Essay on the Foundations of Geometry was devoted 
to an elaboration of the epistemological foundation of non
Euclidean geometries, with special emphasis on projective ge
ometry; and Hilbert's successive versions of his Grundlagen der 
Geometrie were meant to provide a system of axioms sufficiently 
general to serve as the inferential basis for all non-Euclidean 
geometries as well as for Euclidean geometry); rather, these 
thinkers ignored the nineteenth century developments of non
Euclidean geometries, of noncom mutative and nonassociative al
gebras in the historical sense, and treated them as logical 
deductions from a core of axioms which presented a complete and 



164 IRVING H. ANELLIS 

closed formal system. In short, the formalists and logicists 
treated mathematics a historically. 

Our philosophers were writing in response to several "cri
ses". The development of hyperbolic and elliptic geometries, of 
noncommutative and nonassociative algebras, and of nonlinear or 
non-Aristotelian (i.e. multiple-valued) logics challenged mathe
maticians to redefine their conceptions of mathematical proof, 
validity, logical rule, deduction, forInBl system - and this led to a 
renaissance of logic which began with Boole in the 1850s and 
continued for half a century, through the work of Peano, Frege, 
C.S. Peirce, Hilbert, and Russell (to name only the more promi
nent figures); it led to the creation of mathematical logic. While 
logicians engaged in metamathematical studies in which such 
logical concepts as proof were defined and developed mathemati
cally, and while they built logical systems which would be 
sufficiently general yet sufficiently powerful to recreate all of 
ordinary mathematics, their philosophically-minded colleagues 
created the foundational philosophies of mathematics - Formalism, 
Logicism, Intuitionism/Constructivism - which would provide the 
ahistorical epistemological anchors for the mathematico-Iogical 
and mathematical enterprises. But almost at the very moment 
when these mathematical edifices and their philosophical anchors 
were completed, a new "crisis" arose in the form of GOdel's 
incompleteness theorems, according to which such systems as 
Whitehead and Russell's Principia Mathematics could be shown to 
be complete if and only if they were inconsistent; worse still, 
these systems could not themselves be used to prove their own 
completeness, despite their claims to universality ("complete
ness" in the Fregean sense, to encompass all of mathematics 
deducible from the selected axioms, including any systematic 
proofs of the completeness and consistency of the system). It 
then became the business of philosophers to try either to rescue 
mathematics or to admit that human knowledge - including in 
particular mathematical knowledge - was itself incomplete, and 
perhaps even essentially incompletable. It is significant that, 
faced with GOdel's results, philosophers for the most part felt 
panicked; and among these were some who took Heisenberg's 
Indeterminacy Principle, GOdel's Incompleteness Theorems, and 
Carnap's infinite meta-linguistic regress to be variants or appli
cations of a single, central epistemological Fact. With a few 
notable exceptions, philosophy of mathematics had not gone 
beyond this -"crisis" for nearly four decades following the initial 
shock of GOdel's announcement in 1931. It is equally significant, 
however, that (as John Dawson [1985] has shown) mathematicians 
have not felt in the least exercised or hampered by GOdel's 
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results, but continued to till their mathematical gardens, then 
and now, and to make great progress. In fact (as Saunders 
Mac Lane [1986] has noted), it was precisely around 1930 that 
mathematical logic became a sepdrate field, and in the years 
since, especially after thd end of World War II, gradually became 
a highly specialized branch of mathematics, with distinct sub
bran(;hes. We must ask 'Why?' Could it be that mathematics does 
not proceed the way that the foundationalist philosophers of 
mathematics have said that it must and does? Could it be that 
mathematics is not simply logic, that its methodology is not 
purely and simply formal and deductive? Indeed, when we talk 
today of "logic", we are really talking, as MacLane has said, 
about several distinct and highly developed technical branches 
of mathematics: and many of these branches have grown out of 
technical responses to the philosophical "crises" of mathematics 
- for example, proof theory from Hilbert's metamathematics, or 
recursion theory from GOdel's studies of incompleteness. 

Increasing numbers of philosophers of mathematics have 
begun asking these questions in the past decade, taking their 
cues from forerunners such as Imre Lakatos, who noted that 
"whenever the mathematical dogmatism of the day got into a 
'crisis', a new version once again provided genuine rigour and 
ultimate foundations, thereby restoring the image of authorita
tive, infallible, irrefutable mathematics ... " (p. 5 of Lakatos 
[1976]). These same kinds of questions were raised at the turn of 
the century by Poincare, and answered in a similar vein. Writing 
during the years when mathematical logic was attaining its 
Fregean-Hilbertian adolescence and with youthful exuberance 
laying its claim to be the foundation for mathematics, Poincare 
asked whether mathematical reasoning was syllogistic or deduc
tive. Today we would not argue that there is a dichotomy 
between syllogistics and deductive reasoning, of course; we 
should rather assert that syllogistic is an instance of deductive 
reasoning, just as we would assert that propositional calculus is 
just a fragment of the first-order functional calculus known as 
monadic predicate logic. Still, if we accept Poincare's distinction, 
we notice that he is merely asking one form of the Lakatosian 
question. In Science and Hypothesis, Poincare [1903] worried 
that, if mathematical reasoning were deductive, then mathematics 
would be reduced to a vast but empty tautology, while, if it were 
syllogistic, then it must be asked how anything new could ever 
be added to the body of mathematical knowledge, what he calls 
"data". Poincare's solution is to assert that there is unconscious 
hypothesizing at work behind the formulation of mathematical 
theorems, just as there is unconscious hypothesizing behind the 
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formulation of new scientific theories. Mathematical "proof" is in 
essence verification by mathematical reasoning, and this reason
ing is in fact syllogistic; mathematical reasoning is a very long 
and repetitive syllogistic process, and the syllogism applied is a 
hypothetical syllogism. This places Poincare as the true precur
sor of Popper's hypothetico-deductivism and Lakatos' empirico
historicism, based on Popper's hypothetico-deductivism and fal
sifiabilism. Kitcher's [1984] is devoted to a full exposition of the 
epistemology of Popperian hypothetico-deductivism for mathe
matics, and details the logical apparatus for this methodology. 
Charushnikov [1987] and Van Bendegem [1987], however, have 
(correctly, I think), argued that Lakatos has gone too far in the 
direction of identifying mathematics with the empirical sciences, 
and mathematical methodology with the experimental methodology 
of the empirical sciences. Van Bendegem [1987] in particular has 
used the example of Fermat's last theorem, as a problem which 
has long resisted solution, as evidence that falsifiabilism has no 
role in mathematics. And while he has resisted generalizing, we 
can point to similar situations, for example, to Hilbert's tenth 
problem, for which Iurii Matiiasevich has shown that the solution 
is that it is undecidable that there is an algorithm for deciding 
if every Diophantine equation has a solution in the integers. In 
general, if GOdel's incompleteness theorems have any proper 
philosophical relevance, it must be that there are some mathe
matical problems that can be shown to be undecidable, and that, 
as a consequence, falsifiabilism cannot be a proper test for a 
mathematical theorem as it is for a scientific theory. 

The notion that philosophers discard an old mathematical 
dogmatism and replace it with a new one when a "crisis" under
mines the old one, suggests that philosophies of mathematics 
have histories, and that the history of philosophy of mathematics 
is tied to the history of mathematics. If philosophy of mathemat
ics changes paradigms -to use the Kuhnian terminology - when 
faced with a "crisis", then we need to explain this concept of 
crisis. If the foundationalist philosopher of mathematics is cor
rect, and if in particular the formalist who holds that mathemati
cal progress consists of the (history of) deductions from axioms 
to theorems in an ahistorical, Euclidean-like manner, then we 
may wish to think of a crisis as a situation in which a single set 
of axioms has led to one or more inconsistent theorems. In this 
case, the three "crises" of foundational philosophy of mathemat
ics about which Snapper [1979] spoke are traceable back to the 
crises of mathematics in our sense,· that the historical develop
ment of mathematics points towards the need to reconceptualize 
the nature of mathematics, to broaden the scope of our concep-
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tion of mathematics and to permit wider latitude in our under
standing of certain basic mathematical concepts. In this sense, 
the history of mathematics is the history of learning and strug
gling to accept as intuitively true certain ideas which had 
heretofore been regarded as unintuitive, for example the gradual 
acceptance of the legitimacy, both theoretically and practically, 
of irrational numbers, which classical Greeks regarded with 
suspicion, and which, while used (in the guise of incommensu
rable magnitudes)-, albeit with reluctance, in computations, were 
abolished from classical number theory. 

As another example of the crisis, we now know that Euclid's 
parallel postulate is independent - that if we drop it as a 
postulate of Euclid's system, we can obtain consistent systems 
for which the parallel postulate fails: in short, given Euclidean 
axioms without the parallel postulate, we can derive a geometry 
in which either (a) parallel lines 1, m do not intersect and for 
any line p perpendiCUlar to 1, p is perpendicular to m (Euclidean, 
parabolic, geometry); or (b) for a line 1 and a point P not on I, at 
least two distinct lines parallel to 1 pass through P (hyperbolic 
geometry); or (c) no parallel lines exist (elliptical geometry) -
and all three of these geometries are consistent. Crisis! And a 
means is sought to resolve or dissolve the crisis. But note that 
the enforced need to widen our conception of geometry to 
include non-Euclidean geometries immediately raised as well a 
foundational question of the scope of the logical or foundational 
concept of consistency: this is how our conception of crisis 
encompasses both Lakatos' historical sense of crisis and 
Snapper's foundational sense. 

If, however, mathematics lurches from crisis to crisis, reso
lution to dissolution, then it must be equally clear that mathe
matics has a history, as much as does philosophy of mathematics. 
The concept of crisis in mathematics shows that mathematics 
changes, that in fact it does not proceed exclusively by formal 
deductions in a logical, ahistorical evolution. Behind the crises of 
mathematics are false starts, dead ends, crooked paths, guesses. 
And in fact, the study of the history of mathematics shows that 
mathematical progress could be defined in terms, as I have just 
suggested, of the gradual acceptance of formerly nonintuitive or 
nonintuitively true propositions as, finally, intuitively true. In 
this case, mathematical progress need not necessarily be linear 
or continuous. On the contrary, the history of mathematics offers 
examples, familiar and unfamiliar, of events in the growth of 
mathematical knowledge that betray the distortions and disconti
nuities of mathematical progress. Historians of mathematics have 
been more aware of this fact far longer than have philosophers 
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of mathematics. But the traditional historians of mathematics 
have nevertheless also seen mathematical progress as essentially 
linear. This no doubt was due to the fact that, in the past, 
historians of mathematics have, professionally t tended to be 
retired mathematicians. It is only recently that history of mathe
matics has corne into its own as an independent profession. With 
that professionalization has come a plea for a more accurate 
history of mathematics, one that seeks to understand the mathe
matics of the past as those bygone mathematicians themselves 
saw mathematics in their own times (see, e.g., Kitcher & Aspray 
[1988], especially pp. 24-25). This is in response to an essentially 
historiographical problem. The historian of mathematics Karen 
Hunger Parshall (especially p. 129 of her [1988]) has explained 
the situation thusly: 

Traditionally, historians of mathematics have most often 
adopted a presentistic approach to their subject. From the 
vantage . point of the state of the discipline in their own 
times, they have tended to portray the development of 
mathematics as fundamentally linear in nature. In other 
words, looking back into mathematical history, they have 
picked and chosen from among the various contributions 
and constructed a logical, straight line progression from 
the past to the present. This kind of history serves to 
anchor contemporary mathematics in the past by providing 
it with a clear sense of direction, but at the same time it 
profoundly distorts the view of the mathematical climate at 
any given time in history. In the search for predecessors 
of a particular type of equation, theorem, or idea, other 
concepts which may have been of prime importance to the 
authors under scrutiny tend to be ignored or trivialized. 
Furthermore, competing approaches and underlying phi
losophies often fall into total obscurity ••.• 

As a corrective, Parshall suggests that historians of mathematics 
take as their goal a reconstruction of the dynamics of mathemat
ics at some particular time, with the aim of examining the under
standing, and accounting for the failures as well as the suc
cesses, of the mathematics of the past, in terms of the process 
which she calls "the natural selection of ideas" of mathematics, 
its history, and philosophy. 

It is my contention that mathematical progress frequently 
depends upon the vagaries of style, of luck, of time, and of fact. 
(This does not, however, mean that I reject altogether the role of 
logic and set theory in the epistemology of mathematics; on the 
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contrary, our age of mathematical "rigor" requires that, once a 
new piece of mathematical knowledge, by whatever means, has 
been discovered, created, or otherwise acquired, it must then be 
presented as a theorem, drawn through a formal logical deduc
tion from already accepted mathematical knowledge, before it can 
itself be accepted as true, and thereby validated as indeed 
proven. This is in contrast with Steiner's [1975] study, which 
largely consists of a repudiation of the formal or deductive 
character of mathematics. Moreover, I have argued (Anellis 
[1981]) that developmental psychology patterns the same episte
mological processes found in intuitionistic mathematics, and that 
this pattern is provided by an extensional approach, based on 
intuitionistic set theory.) 

Thanks to writers such as E.T. Bell [1937], whose historical 
accuracy however is unfortunately sometimes sacrificed for the 
sake of a "good story", the reader already knows well of the bad 
fortune of Abel and Galois, whose works Cauchy had managed to 
misplace. More recently, J.-P. Van Bendegem [1988] has provided 
an example of the resistance of mathematicians to a recent proof 
by Roger Apery, using the "old fashioned" methods of Euler, of 
the irrationality of solutions for the Riemann zeta function Z(3). 

I shall present a number of not very well known examples to 
illustrate my claims that mathematical progress - or regress -
can be a matter of (1) Style (Bonasoni's ''unpropitious'' attempts, 
against the mathematical practices and currents of his day, circa 
1575, to geometricize algebra); (2) Luck (Jean van Heijenoort's 
failure to publish important results in model-theoretic proof 
theory, and his reasons); (3) Time (how World War II interrupted 
John V. Atanasoff's opportunity to obtain a patent for his world's 
first electronic digital computer); and Fact (Bertrand Russell's 
deliberate distortions of the history of modern logic - with his 
reasons? and the consequences). These four factors are some
times connected. 

Using our examples, we shall explore and analyze these 
factors and examine the import which they have for mathematical 
progress and for our knowledge of the history of mathematics. If 
I am right, these examples provide evidence for the contention, 
formulated by Lakatos and his followers, and borrowed from 
Popper out of the broader context of the philosophy of science, 
that scientific knowledge generally, and mathematical knowledge 
in particular, is rooted in, and defined by, its history. In this 
case, if we wish to understand philosophy of mathematics as the 
theory of the formal development of mathematical knowledge, 
then history of mathematics provides, and must be understood 
as, the nontrivial content of philosophy of mathematics, and 
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philosophy of mathematics must become the theory of the his
torical development of mathematics as an evolving body of formal 
knowledge. If 80, then the question of whether Kuhnian revolu
tions, marked by wholesale paradigm shifts that radically refor
mulate and reorient scientific thinking, becomes a live question 
for philosophy of mathematics as well (see, e.g., [Fang, 1973]). 
Some of the examples which will be considered may suggest that 
Kuhnian revolutions indeed pertain to the history of mathemat
ics. Whether or not it does depends, as Mehrtens [1976] has 
suggested, upon how one finally defines 'crisis' and 'revolution'. 
Glas [1987] does not accept the Kuhnian theory, and uses the 
example of the "analytic" approach to mathematics, presented by 
Lagrange and Laplace, with mathematics understood as a lan
guage or formal system, in conflict with the older intuitive 
approach, defended by Monge, which regarded mathematics as 
the study of the movements of spatial configurations. However, it 
could be as easily argued that the theoretical conflict between 
the "analysts" Lagrange and Laplace and the "intuitionist" 
Monge represents merely the first step in the evolution towards 
the Bourbakian formal deductive axiomatic style of today. 
Mehrtens, along with Crowe [1975], rejects the Kuhnian theory of 
revolutions in mathematical history; but Mehrtens accepts the 
claim of broader sociological influences on the choices made by 
the mathematical community. The basis for the rejection of 
Kuhnian revolutionism is precisely that old mathematics is never 
altogether discarded; rather, any qualitative jump in mathemati
cal knowledge or mathematical methodology tends to center on 
the absorption of older results into newer results, leading to an 
increasing generalization of mathematics that sees older and 
newer results as specific cases of a more general theory. A good 
example would be Klein's Erlanger Program, which brought the 
old Euclidean geometry together with the non-Euclidean geome
tries and with algebra, by interpreting geometries in terms of 
transformation groups. It" is in fact a truism that the history of 
mathematics has developed - our examples should make that plain 
enough to anyone who does not already think so. It is also a 
truism that the history of mathematics provides the nontrivial 
content for a philosophy of science which understands itself to 
be the theory of the historical development of mathematics. 

These are truisms which Marxist philosophers of mathematics 
have known from the outset, beginning with Marx's Mathematical 
Manuscripts and Engels' Dialectics of Nature. It is a truism which 
was first formulated, in its non-Marxist terms, by Lakatos, who, 
unlike Marx or Engels, was specifically trained as a scientist and 
as a mathematician. And, although we must look to the influence 
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upon Lakatos of Popper for the former's historically-oriented 
study of the nature and development of the concepts of mathe
matical proof and mathematical rigor, we must look to the influ
ence of S.A. Ianovskaia for the Lakatosian conception of a 
historical philosophy of mathematics; for Ianovskaia, with whom 
Lakatos briefly studied at Moscow State University (probably in 
the immediate post-war years), was the leading Soviet historian 
and philosopher of mathematics of her day and the editor of the 
Russian edition of Marx's Mathematical Manuscripts. (For a brief 
professional biography of Lakatos, see Hersh [1978], which does 
not, however, give any indication of Lakatos's ties to Ianovskaia; 
for a highly critical appraisal of Marx, and especially of Engels, 
as mathematicians, see van Heijenoort [1986]; van Heijenoort's 
criticisms of Engels in particular should be taken carefully, 
however, with the understanding that Engels after all had no 
real mathematical training. For a discussion of the work of 
Ianovskaia, see Anellis [1987] and [1987a]). This view of mathe
matics has thoroughly permeated contemporary Soviet philosophy 
of mathematics, as well as history of mathematics, and not only in 
terms of dialectics (for example, as seen in the dialectical his tor
ico-philosophical writings of A.D. Aleksandrov of the older gene
ration, but also in the Lakatosian terms, among such leading 
writers, e.g., as Aleksei Georgeevich Barabashev, who, too young 
to have been a student of Ianovskaia, was profoundly influenced 
by her teaching, through her students, such as A.P. Iushkevich, 
S.S. Demidov, and F.A. Medvedev. 

Let us, then, turn to our illustrations. 

A Matter of Style 

The choice of mathematical style is to a large extent philosophi
cal. Clearly, how one does one's mathematics will depend upon 
one's conception of the nature of mathematics, of its uses as well 
as its intellectual role within the larger epistemological structure 
of the architectonic of knowledge. The commercial and practical 
applications of ancient mathematics among the Egyptians and 
Babylonians led to a concrete conception of mathematics as a 
computational and mensurational tool. Thus, if we examine the 
kinds of mathematical problems and the methods of their solu
tions undertaken by the pre-Greek calculators, as Aaboe [1964], 
for example, has done, we find very specific problems, for which 
very specific rules of computational manipulations are given. 
This same concrete sty Ie of mathematicizing, rooted in practical 
usage, is repeated in the highly commercialized era of the late 
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middle ages and early renaissance of the XIII-XVIth centuries, 
when abacus books, frequently designed as handbooks of com
mercial mathematics for merchants, dealt with concrete practical 
arithmetical problems in fairly specific, concrete ways (see, for 
example, the Treviso Arithmetic of 1478 and the accompanying 
socio-historical essays by Swetz [1987]). (A particularly potent 
example of this kind of phenomenon occurred in Muscovy during 
the XIV-XVIIth centuries, during which the practical knowledge 
of mathematical methods of arithmetic and geometry was roughly 
at a level equiValent to that found in ancient Egypt in the time 
of Pythagoras and Herodotus, while, with a few notable excep
tions, the Muscovites regarded theoretical knowledge of mathe
matics, if at all, with fear at best, with hostility at worst, 
concerned that "number wisdom" was a direct danger and devil
ish challenge to "divine wisdom"; see [Anellis 1988-89].) For the 
more theoretically-minded ancient Greeks, who, however, learned 
much of their mathematics from the Babylonians and Egyptians, 
mathematics took on a formal style, epitomized in the axiomatic 

,system of Euclid's Elements. As is well known, this style is 
characterized by the abstraction and generalization that typified 
Hellenic Greek disdain for the concrete and the practical, and its 
equal glorification of the theoretical that marked the intellectual 
search for "First Principles" and took mathematics as the exem
plar as well as the methodology (mathesis) of theoretical scien
tific knowledge. 

The matter of style is not, however, dependent exclusively 
upon philosophical considerations. As the cases of the pre-Greek 
accountants and rope-stretchers and the renaissance abacists 
show, there are historical and sociological factors to consider. 
The sociological milieu in which mathematics is done must impact 
the style in which that mathematics is done; a commercial, 
practical society gives rise to financial arithmetic and a practi
cal, concrete style of mathematics, while a society which stresses 
the theoretical gives rise to an abstract, formal style. There are 
also more specific historical considerations which impact upon 
mathematical style; as the body of mathematical knowledge in
creases, mathematical styles become increasingly formal, ab
stract, general, in order to accommodate new mathematics and to 
tie new fields together, developing their interconnections, in 
order to explore and unify these results. In a paper on the 
variations of mathematical style, the well known mathematician of 
the Bourbaki school Claude Chevally [1935] presented historical 
examples from the nineteenth century history of real analysis, 
particularly with regard to the rigorous definition by Weier
strass and his immediate predecessors, in terms of epsilon, of 
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the limit concept developed by Cauchy, and of the set-theoretical 
concerns of Dedekind and Cantor, as successors of Weierstrass, 
to formalize the real number system upon which the epsilon 
definition of limit depends. Another result, as is well known, is 
the development of abstract algebra, where a concern was the 
formal st.udy of the real field as an abstract system. "The 
axiomatization of this theory," Chavally wrote [1935; q.v. 
Chevally 1985, p. 7], "profoundly modified the style of contempo
rary mathematical writing." The style, formal, abstract, deduc
tive, typified by Bourbaki (of which Chevally was a member), is a 
long way from the informal, fluid style of Euler. We would not 
today regard Euler's proofs as proofs in our, Bourbakian, sense, 
as formal deductions carried out axiomatically according to the 
rules of mathematical logic - or at least of being capable, if one 
had the patience, of being written out as formal deductive 
proofs! J.-P. Van Bendegem [1988], for example, has shown that 
contemporary mathematicians, having been raised in the spirit 
and style of Bourbaki, have exhibited intense resistance to a 
recent proof by Roger Apery, using the "old fashioned" methods 
of Euler, of the irrationality of solutions for the Riemann zeta 
function Z(3). The point being made is that styles of mathematics 
and corresponding conceptions of the nature and proper struc
ture of proofs vary with the age and with mathematical sophisti
cation. Van Bendegem has shown that the resistance of mathema
ticians to Apery's Eulerian proof is based on a suspicion of the 
relatively unsophisticated methods of Euler for solving a pro
found mathematical problem that had not yielded to sophisticated 
contemporary methods. While Wilder's [1953; 1968] anthropological 
and sociological analyses of mathematical progress help to point 
up some of these broader sociological questions, Crowe's study 
[1975] propounds laws to account for the type of example which 
Van Bendegem [1988] has dealt with. In particular, Crowe can be 
understood to point out that some new results are unwelcome 
because they run counter to the mathematically accepted stan
dards of the time. 

The case of Bonasoni and his Algebra Geometrica shows not 
only that the mathematical style one adopts affects not only the 
attitude which one's contemporaries may take, but also can 
impact, negatively, the course of the development of mathematics. 

Little is known about Paolo Bonasoni, other than that he 
served as a professor at the University of Bologna during the 
late sixteenth century, and that he was the author of the 
treatise Algebra Geometrica, written some time around 1575, 
possibly as late as 1585. This work, unpublished in the author's 
lifetime, was unknown until 1924, when it was discovered in the 
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University of Bologna archives by the historian of mathematics 
Ettore Bortolotti, a specialist in Renaissance and seventeenth
century Italian mathematics. He announced his discovery of the 
Bonasoni manuscript that year [Bortolotti 1924/1925], and gave a 
brief description of the manuscript in all of its aspects, its 
physical condition, the situation of mathematics, especially of 
algebra, in Renaissance Italy, and provided an outline of 
Bonasoni's thesis, methodology, and results, including textual 
excerpts, in his article. However, the work of Bonasoni continued 
to be largely ignored. One understandably finds nothing in 
Michel Chasles' [1837; 1875] classic history of geometry. Very 
regretably, nothing will be found about Bona80ni and his work in 
the modern classic by Coolidge [1940], which appeared after 
Bortolotti's announcement. A single, but very telling, very im
portant, paragraph is devoted to Bonasoni in Boyer's [1956] 
scholarly, even pedantic, history of analytic geometry, while 
Jacob Klein [1968], in an obscure footnote, discussing the role of 
Vieta's contributions to the founding of analytic geometry, men
tions Bonasoni, along with the much better known Rafael 
Bombelli, as a precursor of Vieta. Only recently was the full text 
of the Bonasoni manuscript published [Bona80ni 1985] and given 
serious consideration (see [Anellis 1987c]). 

It is easy to understand why mathematical scholarship is 
willing today to return to forgotten texts; Parshall [1988], for 
example, has shown that our understanding of the history of 
mathematics is enhanced when we seek to understand the mathe
matics of a bygone time as those who worked at that time 
understood it. The social historian Johan Huizinga, a specialist 
on late medieval history of the Low Countries, once spoke of 
"bowing to the spirit of the age" that one studies. Historians are 
more willing today, perhaps because of the relativism of our age, 
to explore texts which had once been discarded or ignored 
because they did not suit the temper of their own times. We need 
here to examine why Bonasoni's work was ignored by his col
leagues and successors. The fact is that it was a matter of style. 

Reasons for the obscurity and neglect of Bonasoni may be 
detected by an examination of the published text and a compari
son of Bonasoni's goals and mathematical style with those of his 
contemporaries. To state the point simply, Bonasoni's work ran 
counter to the directions pursued by the majority of his con
temporaries. We may even conclude that Bonasoni's work, which 
was, after all, under some of the same influences as affected the 
work of his more successful colleagues such as Bombelli and 
Viets, was nevertheless not a true precursor to the work of 
Viets. In order to understand this, we have to examine trends in 
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Italian mathematics of the sixteenth century. 
Historians of mathematics traditionally distinguished two 

major styles of mathematics, the synthetic (or geometric) and the 
analytic (which today we would call the algebraic) styles. Both 
sty les can be traced to classical times. Analysis is characterized 
by the assumption of the truth of the intended conclusion, from 
which are derived the conditions necessary and sufficient for 
the truth of that hypothesis. Synthesis, which the historical 
tradition associates with the axiomatic method of Euclid, is 
characterized by the assumption of the truth of the necessary 
and sufficient conditions of the conclusion, from which condi
tions the conclusion is then logically derived. Both of these 
styles represent theoretical approaches to mathematics. For the 
Renaissance Italian mathematicians, a third approach became 
dominant. It was a non- theoretical approach, one which was 
oriented specifically towards performance. This tour de force 
style of mathematics, developed by sixteenth century Italian 
mathematicians, made successful problem solving the ultimate 
goal of mathematics. During the Renaissance, Italian mathemati
cians earned their reputations and built their careers on these 
tours de force. They were expected to get results as quickly and 
"cheaply" as possible. This style probably owes much to the 
practical nature of the mathematics of the time, and can be 
traced to the commercialized, practical nature of Renaissance 
society (see, e.g. [Swetz, 1987]). The style, with its concern for 
quick, accurate solutions rather than for procedural finesse, 
resulted in a "hit-or-miss method" of obtaining results. In the 
search for a more efficient, less haphazard method, one which 
could also be generalized to a wide assortment of problems, Viete 
sought to formalize the tour de force, or power-problem-solving, 
method. Thus, the search for a quick and easy method for 
mathematical problem solving led Renaissance Italian mathemati
cians to the concept of a mathesis universalis (see [Crapulli 
1969] ). 

Bonasoni shared with his colleagues this goal of developing a 
"mathesis universa". Unlike them, however, he chose a "geomet
rical algebra" as his mathesis, while his colleagues chose nu
merical algebra. The algebra geometrica is offered in the "Prae
fatio" of Bonasoni's text as an alternative to the "algebra nu
meralis" being developed and refined by Bombelli, Buteo, Nunez, 
and Viete in these years. In his Algebra, Bonasoni gives the 
geometrical proofs and solutions to three problems which are the 
geometrical equivalents of the solutions of the three canonical 
forms of the quadratic equation in numerical algebra. Moreover, 
his method allows him to give geometrical solutions to problems 
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which others had been able to solve algebraically but for which 
they were unable to provide geometric constructions. Bonasoni's 
methods thus permit geometrical treatment of algebraic problems; 
but more, Bonasoni uses algebraic reasoning in carrying out his 
geometrical problems, albeit his proofs, 8S a consequence, re
verse the order of the standard algebraic proofs. He has, in fact, 
shown by his "backward" algebraic style proofs, that analysis 
and synthesis are duals. Bonasoni's contemporaries, however, 
were interested in alagebraicizing geometry, whereas Bonasoni's 
work led to the geometricization of algebra. Thus, his work 
became lost in the rush to develop numerical algebra as the 
mathesis. Bonasoni's two reasons for his choice were simple, and 
he gave them straightforwardly in his "Praefatio". For one, he 
simply fert more comfortable operating with geometrical concepts, 
noting that he wished to rely upon both sensible intuition and 
intellect, upon visible representations of geometric configura
tions, rather than dealing with surds as if they actually existed 
in nature, or in mathematical reality as numbers. He therefore 
provided his Algebra with an algebraic symbolism devoid of 
algebraic notation; his symbols were geometrical. This geometri
cal symbolism, based on use of letters, Boyer [1956, pp. 58-59] 
has argued, allowed Bonasoni, unlike his algebraically-minded 
colleagues, to deal with whole classes of equations in terms of 
parameters, and thus to anticipate the notation developed by 
Viete. At the intellectual level, he argued [Bonasoni 1985, p. 3] 
that "numerical algebra most often exhibits the quotiety in surd 
numbers, ... while geometrical algebra lacks so great and con
tinual a disadvantage ••• " In other words, Bonasoni was much 
more conservative than were his contemporaries who, in their 
zeal for tour de force problem solving, were more ready than 
Bonasoni to acquiesce in the use of irrational roots. 

It could not have been as clear to Bonasoni and his contem
poraries as it is to us that they were developing analytic 
geometry. For them, algebraic geometry and geometrical algebra 
denoted the same subject, but seen from totally different, com
peting perspectives and styles; one marks the algebraization of 
geometry, the other the geometricization of algebra. In 
Bonasoni's day, the style favored the former. As a result, 
Bonasoni's work was, as far as we are able to tell, ignored even 
in its own day, and Viete had the greatest impact of Bonasoni's 
contemporaries on the future work of Fermat and p more impor
tantly, of Descartes. 

In his Geometrie (1637), Descartes sought primarily to al
gebraicize geometry, to free it from its dependence upon dia
grams. But he also sought to provide a geometric interpretation 
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for algebraic operations, in short, to geometricize algebra. Since 
Bonasoni's work was left unpublished, we can convincingly 
suppose that Bonasoni had very little, or no, influence upon 
Descartes. It is consequently fair to suppose also that if 
Bonasoni's work had had the circulation and the public hearing 
that had been afforded the work of Bombelli and Viete, then 
analytic geometry, in the Cartesian sense of the full unification 
of geometry and algebra, might well have occurred a generation 
earlier than it did in the hands of Descartes himself, since 
Bonasoni's geometrical algebra could have provided the comple
ment to Viete's "algebraical" geometry, the missing step between 
Viete's work and Descartes'. 

The history of Bonasoni's posthumously discovered and ne
glected work and belated posthumous publication may be taken 
as an example of the effects of fads and trends in mathematics, 
and of the impact of social and professional-political pressures 
on the history of mathematics. It shows that the success of a 
worthwhile bit of mathematics, and the impact of that work on 
the consequent development of mathematics, can well be only a 
matter of style. Our next case, that of Jean van Heijenoort, 
shows that the presentation of a bit of mathematics, and the 
assignation of credit for a result, even of what one does or does 
not consequently contribute, can be a matter of luck. 

A Matter of Luck 

Jean van Heijenoort studied mathematics at New York University, 
writing his masters thesis, On the correspondence between E. 
Cartan's method and the vector method in differential geometry 
[1946] under the direction of J.J. Stoker. He continued his work 
in differential geometry, with a doctoral thesis On locally con vex 
surfaces [1949]. In this thesis, van Heijenoort proved the theo
rem that, if there is a support plane of a set (i.e. a plane 
through a boundary point of the set such that one of the two 
open half-spaces it determines does not contain any point of the 
set) through every boundary point of an open set, or of a closed 
set having interior points, then that set is convex. Van 
Heijenoort's thesis, as originally written, proved this theorem for 
the two-dimensional euclidean space ~. Shortly before he was to 
defend his thesis, however, the Soviet mathematician Aleksandr 
Danilovich Aleksandrov, well known for his work in geometry and 
foundations, also gave his proof of this same theorem for EZ 

([Alexandrov 1948]). Van Heijenoort, in discussions with LH. 
Anellis in 1976 or 1977, remembered that he had had, because of 
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this, to rewrite his thesis, under great pressure and with great 
haste; and indeed, was able to generalize his results to En. It 
was this new result, by van Heijenoort's recollection, which he 
finally defended in order to obtain his doctorate. A check of the 
evidence, in this case, of the thesis itself, reveals, however, that 
the thesis, in its E2 version, was officially accepted by van 
Heijenoort's thesis committee at New York University on 1 April 
1949. It was only later, in 1952, that van Heijenoort wrote, and 
published his generalization of the original theorem, in the paper 
On locally convex manifolds ([van Heijenoort 1952]). In this case, 
the memory may be more important than the fact. 

It would be fruitless to speculate about what van Heijenoort 
might have accomplished had he obtained his results on convex 
surfaces a few months sooner, and therefore have announced 
those results before they had been announced by Aleksandrov. 
We cannot know whether van Heijenoort would have attained 
renown as a geometer, or whether he would have left a larger 
body of publications as his legacy. Nor can anyone, other than 
van Heijenoort himself, say what van Heijenoort's true response 
was to this experience. My own recollection, based on my reading 
of the nuances of van Heijenoort's words and his comportment 
when he delivered them,. must be tentative and speculative at 
best; it is that the episode had a deep and abiding impact for 
him. What can be said with certainty is that van Heijenoort did 
not establish a reputation as a geometer, but rather as a logician 
and historian of logic, and, moreover, that he published a very 
small amount of original work during his lifetime, even in logic. 
His reputation was built upon his historical scholarship rather 
than on any new mathematics that he produced. He was best 
known for his editorship of the anthology From Frege to GOdel 
[1967] and for his publication of the work of Herbrand [1968]. 
Beyond that, there were several short, largely historical, par
tially philosophical, papers, many appearing for the first time in 
his posthumously published Selected essays [van Heijenoort 
1986], although a few of those appearing in that volume were 
published previously. The great majority of his published corpus 
is comprised of the many book reviews which he wrote for the 
Journal of Symbolic Logic between 1956 and 1973. 

Van Heijenoort continued to write a small number of papers 
in differential geometry and related areas, gradually making a 
shift in his research by way of topology, and in particular of 
some of Brouwer's work, towards logic. However, most of his 
technical writings since the appearance of his study of convex 
manifolds remained unpublished. This includes the important 
work which he carried out, in the decade between 1968 and 1977, 
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in model-theoretic proof theory. In the mid-1960s, he had become 
interested, apparently following his participation in an informal 
discussion group which met in New York City around 1964/65, 
with Richard Jeffrey and Raymond Smullyan, where much of the 
talk centered around Smullyan's and Hintikka's work on Beth 
tableaux as a graphical representation of Gentzen-style sequent 
calculi and of natural deduction.) In a Beth tableau, two columns 
appear, each divided into two subcolumns; in the left subcolumn 
of the first column, one lists all true propositions, in the right 
row, all false propositions, while in the left subcolumn of the 
second column, are listed all of the propositions obtained as 
consequences of the true formulae, and in the right subcolumn 
of the second column are listed all of the propositions obtained 
as consequences of the false formulae. This method proved 
needlessly cumbersome, and it was difficult to keep track of 
things, having to hop back and forth between subcolumns and 
columns. Thus, in the mid-1950s, Hintikka and Smullyan began 
developing a one-sided Beth tableau, in particular a left-sided 
Beth tableau, which came to be known as the Smullyan tree, in 
which only truth trees had to be considered. A falsifiability tree 
was also developed, as a special case of right-sided Beth ta
bleaux, or falsehood trees. Here one negates one or more of one's 
initial formulae, but assumes them to be true nevertheless. By 
downward induction, all consequents of these formulae will also 
be assumed to be true. The falsifiability tree can be used as a 
test of the validity of either a formula or of a proof. If the 
negated initial formulae are assumed to be true and if they 
nevertheless yield, in the same tree path both some formulae and 
its negation, then one has found a falsifying assignment for the 
negated initial formulae; if every path of such a tree for the 
negated initial formulae yield such contradictions, then the 
negated initial formulae are invalid, and the original, unnegated, 
initial formulae are valid. (For a history of the development of 
the tree method, see [Anellis forthcoming].) 

Inspired by what he had learned, van Heijenoort began to 
make his own contributions to the tree method. In [1968], he 
explored the relation between Her brand quantification and the 
falsifiability tree method, showing that the Smullyan tree could 
be used whether or not all quantified formulae were in prenex 
form, that is, whether all quantifiers were collected in the 
preface of one's formulae. Next, he proved [1972] that the falsi
fiability tree method for the theory of types with extensionality 
is sound and complete. The method is sound if every formula 
provably valid by the method is in fact valid, and complete if the 
method can prove that every valid formula is valid. In [1973], he 
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showed that the method is sound and complete for propositional 
calculus; in [1974], he proved soundness and completeness of the 
method for first-order functional logic; and in [1975] and 
[1975a], he showed the method to be sound and complete for 
intuitionistic logic. None of these results were published. In
stead, they circulated among van Heijenoort's students and to a 
small number of his colleagues. (For a discussion of these 
manuscripts, see [Anellis 1988].) We can, of course, only specu
late on why they remained unpublished; it could have been that 
they were never intended as anything other than supplementary 
classroom materials, or that they did not meet van Heijenoort's 
high and rigorous standards of excellence - his perfectionism 
has become almost as legendary as Gauss' - or if, because of his 
experience with his thesis, he was hesitant to publish "new" 
results which someone else had, or might have, only a short time 
ago already published, or some combination of all of these 
factors. The fact remains that, with the exception of a greatly 
revised version of a proof of the soundness and completeness of 
the tree method for classical and intuitionistic first-order logics 
and corresponding new proofs for propositional and first-order 
modal logic in [1979], van Heijenoort's results in model-theoretic 
proof theory remained unpublished, and remain, still, largely 
unknown. Moreover, because of this unlucky hesitancy, Bell and 
Machover [1977] published their proof of the soundness and 
completeness of the falsifiability tree method for classical propo
sitional calculus and classical first-order logic before van 
Reijenoort published his, although van Heijenoort's proofs of 
1973 and 1974 were finished first and are simpler, if also some
what longer, and van Heijenoort received no credit for his work. 
Perhaps as a result, a number of logicians have recently begun 
to pu bUsh proofs of the soundness and completeness of the tree 
method for propositional logic ([Boolos 1984]), and for first-order 
logic ([Kapetanovic & Krapez 1987]). These are results which van 
Heijenoort, as we have seen, had already obtained. It is a matter 
of ill luck that he did not publish these results. We must add, 
however, that there is enough difference between van 
Heijenoort's proofs and those of Boolos and the others to allay 
any suggestion that others appropriated van Heijenoort's ideas. 
Moreover, the extremely limited circulation of van Heijenoort's 
manuscripts militates against such a possibility. Had van 
Heijenoort published his results, then these accomplishments 
would have enhanced his stature, would have led to his being 
recognized not primarily, or even exclusively, as an historian of 
logic, but as an original contributor to technical logic as well. 

In this case, van Heijenoort's bad luck in not publishing his 
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results in model-theoretic proof theory, and his consequent 
failure to claim priority to results on the soundness and com
pleteness of the tree method may have derived initially because 
of the bad luck of the poor timing of the results on convex 
surfaces in his doctoral thesis. His experience with his thesis, in 
my estimation, made him hesitant to publish his original technical 
wor k in the succeeding years. In the case of John Atanasoff, bad 
timing proved to be a critical factor in his loss of recognition as 
the inventor of the first electronic digital computer, and, beyond 
that, postponed the development of computer science and wide
spread use of the computer. 

A MB t ter of Time 

Timing is often the crucial factor in priority disputes. The 
classic case of the Newton-Leibniz priority dispute over the 
invention of the calculus, with all its bitterness, is well known, 
and need not be recounted. What is perhaps critical, from the 
point of view of our study, is the question of timing; Newton 
probably obtained his results first, but he failed to announce 
them quickly, fearing they might be stolen, while Leibniz pub
lished his results quickly. Very likely, both men obtained their 
initial results within a very short time of one another. If Newton 
kept his results secret, then the question of Leibniz having 
stolen them seems to become superfluous, if not silly. In van 
Heijenoort's case, his proofs of the soundness and completeness 
of the falsifiability tree method for various calculi assuredly 
have priority over the proofs of Bell and Machover, and of 
Boolos and others. But these proofs circulated hardly at all, 
privately, in unpublished and uncopyrighted form, among a 
handful of colleagues, such as Richard Jeffrey, and a very large 
number of van Heijenoort's students, only a very few of whom, 
however, such as Anellis, became van Heijenoort's colleagues. 
Hence, they remained virtually unknown. But if it is not always 
the case that he who publishes first receives the credit, neither 
is it always the case that he who fails to receive the credit has 
not published first. In Atanasoff's case, work that was meant to 
be secret was not altogether surreptitiously appropriated, but 
was used without permission. And he who borrowed this material, 
not bound by the secrecy, published his results first and 
received credit for Atanasoff's work. For Atanasoff, failure to 
receive credit for completion of the first electronic digital com
puter was a matter of time. 

John Vincent Atanasoff received a Bachelors degree in elec-
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trical engineering from the University of Florida in 1925, a 
Master of Science degree in mathematics from Iowa State College 
(now Iowa State University = ISU) in 1926, and a Ph.D. in 
physics from the University of Wisconsin in 1930. Mter receiving 
his Ph.D., he joined the mathematics and physics departments at 
ISU, where he began his search for a calculating machine which 
would ease the burden and shorten the time that it took to 
perform tedious computations even on the most sophisticated 
calculating machines of the day. In particular, Atanasoff became 
interested in developing a machine that could easily and quickly 
handle the computation of approximate solutions for the wave 
functions with which he had worked in his doctoral thesis on the 
dielectric constant of helium. Well equiped by his education for 
the task he was undertaking, Atanasoff began his studies by 
examining in detail the mechanisms of the calculating machines 
currently available. He noted that the machinery then current 
was incapable of handling complex spectral analysis. During 
these years, especially beginning around 1934, Atanasoff, with 
the aid of some of his graduate assistants, also tinkered with the 
machines then available, and sought ways to link together seve
ral machines in order to achieve greater speed in handling more 
complicated problems. On the basis of this research, Atanasoff's 
graduate students George Gross [1937; 1939] and C.J. Thorne 
[1941] wrote graduate theses on the use of functionals for the 
approximate solutioms of linear differential equations, thereby 
developing a method which made it easier to carry out the 
required mathematics, while Atanasoff himself in 1936 developed 
his Laplaciometer, a small analog calculator. It was concluded, on 
the basis of these studies, that the analog calculators available 
at the time simply could not solve, efficiently, if at all, large 
scale systems of linear equations. Atanasoff therefore undertook 
a study, after 1936, with the assistance of his student Clifford 
Berry, of the possibility of constructing a digital machine. By 
1939, a model had been constructed, and then, by mid-1940, a 
full-sized, fully operational prototype of the electronic digital 
computer, the ABC (Atanasoff-Berry Computer). In August 1940, 
Atanasoff described the ABC in his paper Computing machine for 
the solution of large systems of linear algebraic equations, using 
the mathematical tools developed by Gross and Thorne. The 
paper, which was not finally published until 1973 (see [Atanasoff 
1973]), gave a full engineering description of the machine, and 
an account of its logic. The machine used a Boolean-valued 
machine language which which Atanasoff developed in 1939, 
taking his inspiration from the binary arithmetic presented, 
along with several other number-base arithmetics, in a long 



DISTORTIONS AND DISCONTINUITIES 183 

forgotten elementary school arithmetic textbook which had once 
belonged to his mother. He did not use Boolean algebra directly, 
asserting that at the time, in 1939, he did not recognize the 
application of Boolean algebra to his problem. He also described 
the logic with which computation would take place, using an 
addition-subtraction mechanism, rather than the simple enume
ration used by the analog devices of the day. On the basis of 
this work, Atanasoff filed an application for a patent on the ABC. 
(For a personalized account of this history, see [Atanasoff 
1984].) The paperwork for the patent application was still in 
progress when the U.s. entered World War II. Soon thereafter, 
Atanasoff left ISU to carry out research at the US Naval 
Ordanance Laboratory in Washington, D.C., and it was left to the 
administration at ISU to oversee the progress of Atanasoff's 
patent application. Apparently, however, in Atanasoff's absence, 
the application was never completed, although Atanasoff re
turned to ISU several times during the course of the war to 
check on the progress of the application and to prod the re
sponsible legal authorities into action. Whether the paperwork 
was simply lost in the shuffle of the war effort, or the respon
sible authorities at the college decided that there were other, 
more pressing, more important concerns, or some combination of 
these, is not altogether clear. The fact remains that the timing of 
Atanasoff's application could not have been more unpropitious. 
Matters were made even worse by the visit to ISU of John 
Mauchly. 

Mauchly visited Atanasoff and Berry at ISU in June 1941, had 
seen the ABC, bad its construction explained to him by Berry, 
discussed it in detail with Atanasoff, and had read Atanasoff's 
Computing machine... paper during his week at ISU; all of this 
was done with the understanding that Mauchly would not make 
use of the information which Atanasoff and Berry were to share 
with him. In 1943-1946, Mauchly and his colleague J.P. Eckert, 
using the same logical and engineering principles which 
Atanasoff and Berry developed for the ABC, built their EINAC 
computer. Learning about the development of EINAC and its 
workings, Atanasoff believed that Mauchly had appropriated his 
ideas. The Sperry-Rand company had purchased Mauchly's pa
tent rights, and a lengthy lawsuit (1971-73) was brought against 
Sperry by the Honeywell company, on Atanasoff's behalf, and in 
which Atanasoff was the star witness. The decision was rendered 
in favor of Honeywell, and finally, after more than three decades, 
Atanasoff's claim as the original inventor of the modern computer 
was legalized. Since that time, historians of computer science 
have begun to disentangle the web of confusions and distortions 
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in the record; and it has only been in the last year or two that 
popular attention has begun to focus on Atanasoff as the inven
tor of the computer (see, for example, [Mollenhoff 1988] and 
[Mackintosh 1988]), to the extent even of becoming an American 
folk hero on the order of Thomas Edison and Alexander Graham 
Bell (see, e.g. [Hutchison 1988]). It is evident that, without the 
intervention and distractions of America's entry into the world 
war, Atanasoff would have received his earned recognition much 
s<x>ner than he did, in particular as some historians of computer 
science have detected evidence that Mauchly dissembled in his 
accounts of his meeting with Atanasoff and Berry, and eventually 
falsified too his account of the development of EINAC. It is 
equally clear that, had Atanasoff's patent been granted in a 
timely fashion, the computer would have been available for use 
several years earlier than it was, and thus could have made a 
difference in the advance not only of computer science but of 
mathematical researches related to the American war effort. 

It is not clear, whether we l<x>k at the case of van Heijenoort 
or the case of Atanasoff, whether bad timing led to bad luck or 
bad luck led to bad timing, or whether such a distinction is even 
possible. It is clear from these examples, as it is from the 
Newton-Leibniz priority debate, that the timing of publication of 
mathematical results can make a difference in the ascription of 
priority; but it is also clear from these two recent examples, and 
per haps also from the example of Bonasoni, as it is not from the 
Newton-Leibniz debate, that timing can affect, by years, if not 
by decades, the course of mathematical progress. Whether a lost 
result, lost because of bad timing or bad luck, can significantly 
alter the entire course of mathematical development is no doubt a 
m<x>t point. The best example here would be the case of Fermat's 
last theorem; for unless we can find a proof, in Fermat's hand, of 
his famous theorem, we cannot know how the history of mathe
matics might have been different, how much of the mathematics 
designed since Fermat's time to try to prove this theorem might 
have been lost, or how much new mathematics Fermat's "lost" 
pr<x>f had created. Indeed, "might have been" historical specula
tions are perhaps interesting thought-experiments; but they are 
outside the bounds of the factual study of history of mathemat
ics, more suitable perhaps to philosophy of mathematics. They 
are perhaps also fruitless. Finally, timeliness may also be a 
question of being too early as much as of being too late, as 
Benois Mandelbroit will assuredly note in his scheduled talk on 
"Richardson and prematurity in science" for a recently an
nounced program, on "Lewis Fry Richardson - mathematician and 
meteorologist", to be held at the School of Mathematics of Bristol 
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University on 6 May 1989 (see [Drazin 1988]). 
If those who have argued that Mauchly deliberately distorted 

and obfuscated the history of computer science to his own 
advantage because an accident of timing deprived Atanasoff of 
his patent are correct, then the case of Atanasoff also shares 
some points in common with Russell's alteration of the course of 
the history of mathematical logic through a deliberate manipula
tion of matters of fact. 

A Ma tter of Fact 

Bertrand Russell is universally regarded as one of the greatest, 
and also one of the most important, logicians since Aristotle, a 
reputation which rests to a great extent upon his work with 
Whitehead on the Principia Mathematica. Among Russell's contri
butions are the Russell paradox, along with several "solutions" 
to the paradox, among these the theory of types. It is incontro
vertibly true that Russell was, and to a great extent continues to 
be, one of the most influential logicians of modern times, perhaps 
the most influential since Aristotle. Nonetheless, there is moun
ting evidence that Russell was neither as good a mathematician 
nor as good a logician as his noteriety suggests. An examination 
of Russell's pre-Principia writings, particularly from the period 
1896-1899, many of which remain unpublished, has shown that 
Russell was unable to understand Cantorian set theory when he 
first undertook a study of Cantor's work (see, e.g., Anellis 
[1984], [1987c], and [1987e]); it has also been suggested that the 
growing sophistication which Russell exhibited in his under
standing, through the period 1896-1898, of the modern theory of 
real numbers may have been largely due to wholesale borrowings 
from, or even simple imitation of, other mathematicians, princi- . 
pally from textbooks such as Harkness and Morley's [1898] 
Introduction to the Theory of Analytic Functions (see especially 
[Anellis 1987e, pp. 317-319]). It was also shown that the "incon
sistencies" and related problems which Russell professed to 
detect in both infiniteimal and real analysis were rooted in his 
misunderstanding of set theory and number theory (see [Anellis 
1986]). In these studies, and especially in [Anellis 1987f], it was 
suggested that the philosophical root of Russell's misunder
standing was his Hegelianism. This does not explain, however, 
either how, rather dramatically, Russell's mathematical sophisti
cation increased during the first decade of the twentieth cen
tury, and in particular in 1899-1900, leading to his work on 
Principia, or how one can account for the anomaly of the sudden, 
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momentary, reappearance, in 1963., of Russell's Hegelian interpre
tation, based upon an example taken from F.H. Bradley, of G&lel's 
first incompleteness theorem, whereby Russell concludes that 
GOdel's result means, not that primitive recursive arithmetic is 
complete if and only if it is inconsistent, but that "school-boy 
arithmetic" is inconsistent (that 2+1=4.001) (see [Anellis 1987c, p. 
17]). If, however, one examines the surviving documentation 
related to the writing of the Principia, as Victor Lowe has done, 
or compares Russell's private correspondence during the period 
1899-1904 with his publications from those same years, and with 
his blatantly self-serving autobiographical publications, as 
Anellis and Nathan Houser are doing, some explanations begin to 
emerge. None are very flattering to Russell's mathematical or 
personal legacy. 

After examining the surviving Russell-Whitehead correspon
dence related to the writing of the Principia, Lowe [1985, pp. 
291-292, 263-264] concluded that Whitehead was responsible for 
all of the mathematics in the Principia, while Russell's contribu
tion was restricted to the work on the theory of descriptions 
and the theory of types, and he refers to Whitehead's criticisms 
of Russell's sketchy, incomplete, and sometimes erroneous proofs 
in the early drafts which Russell prepared for the Principia. 
Elsewhere, Lowe [1974 ] notes that Russell destroyed correspon
dence from Whitehead which, Russell admitted, contained harsh 
judgments of some of his work on Principia. Russell, in his 
autobiographical writings, claims that work on Principia was 
fairly evenly shared ([Russell 1948]), although, somewhat later, 
he asserts that Whitehead did all of the mathematics for Prin
cipia, other than the section on series, without, however, dis
claiming that the work was not divided fairly evenly between the 
two ([Russell 1959]). Anellis and Houser [1988] have noted that, 
although Russell studied Schroeder's Algebra der Logik, along 
with some of Schroeder's smaller works, beginning around Sep
tember 1900, and was aware of Peirce's work in the logic of 
relations, largely through Schroeder's citations in the Algebra, 
Russell for the most part either ignored their work in his own 
publications on the logic of algebra written during the period 
1900-1904, or expressed strongly negative views of their work 
whenever he did refer to it in his publications of the period, as 
well as in some of his correspondence, in particular with the 
historian of logic P.E.B. Jourdain, to whom he wrote that 
Schroeder's methods were "hopeless" (see [Grattan-Guinness 
1977, p. 134 ]) and in his criticisms of Norbert Wiener's compara
tive study of Schroeder's work and the Principia (see [Grattan
Guinness 1975]). At the same time that Russell was denigrating 



DISTORTIONS AND DISCONTINUITIES 187 

the algebraic logic tradition of Boole-Peirce-Schroeder, he ex
pressed his private view to others that Peirce's work was 
probably important, although beyond his understanding. At the 
same time, Russell's own work, both in the the 1900-1904 writings 
on the algebra of relations and, later, in the Principia, were 
heavily dependent upon the work in particular of Peirce and, 
even more so, of Schroeder. And although, in his remarks about 
the history of mathematical logic, Russell sought to create a 
dichotomy between the algebraic tradition of Boole- Peirce
Schroeder and the "quantification-theoretic" tradition of Frege
Peano-Russell out of which mathematical logic grew, it is clear 
that no such distinction was made by logicians during this 
period; Peano in particular, whom Russell especially singled out, 
was decidedly in the algebraic tradition. An examination of 
Russell's publications on the algebra of relations during the 
1900-1904 period shows unequivocally that Russell, despite his 
strident deprecation of the work of Schroeder and Peirce in 
those publications, owed a powerful debt to both men. The 
dichotomy between algebraic logic/mathematical logic did not 
exist for logicians at the turn of the century; it seems to have 
arisen primarily through the efforts of Russell to create a sharp 
break between the algebraicists, to whom he owed much, and 
himself and his principal cohorts, Frege, Peano, and Whitehead. 
Russell argued that mathematical logic, as found in Principia, 
arose out of the quantification-theoretic tradition, and had 
supplanted the earlier algebraic tradition, which he viewed as a 
stultified dead-end. But it can be shown that the Principia itself, 
though it is, according to the standard, "Russellian" history, the 
pinnacle of the efforts by Frege, Peano, and Russell to create a 
mathematical logic, is heavily indebted on several levels to the 
algebraic tradition, and simply incorporates the algebra of logic 
as the algebra of sets and the algebra of classes. In fact, it 
should be almost superfluous to note that Whitehead himself, as 
the author of the Treatise on Universal Algebra (1898), was an 
important figure in the algebraic tradition and intended the 
Principia to serve in part as the second volume of his Algebra -
which indeed it can. Moreover, first-order logic was first 
developed by Peirce, was incorporated and developed by 
Schroeder in his Algebra and did not begin with either Peano, 
Frege, or Russell. 

My view that Russell deliberately distorted the history of 
logic in a campaign towards self-aggrandizement, with the aim of 
amplifying his own role in that history, is augmented by addi
tional discrepancies between Russell's published autobiographical 
accounts and unpublished private correspondence which I, to-
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get her with Houser, have examined. Thus, there is, for example, 
Russell's published assertion [1946] that he did not see or study 
Peirce's work until he became interested in the logic of relations, 
that is, in 1900; but one will find correspondence from Russell to 
the historian and philosopher of logic Louis Coutu rat ([Russell 
1899]; quoted by Russell archivist Kenneth Blackwell [1987]) in 
which Russell discusses and recommends study of Peirce's Stud
ies in Logic. It would be easier to dismiss this discrepancy as an 
innocent failure of memory were it not for the growing body of 
evidence of falsification and willful destruction of documents 
which are being discovered by Anellis, Houser, and Lowe. 
Coupled with the views which Russell's turn-of-the-century 
contemporaries shared of Russell's work, most of whom regarded 
the work of Boole, DeMorgan, Peirce, and Schroeder with great 
esteem, and, like Couturat [1904, pp. 129-130], regarded, even 
dismissed, Russell's work as simply a "systematization and syn
thesis" of the work of his predecessors, this is powerful evi
dence that, indeed, Russell has sought to influence the percep
tion, in his favor and against in particular the algebraicists, the 
history of mathematical logic. It is on the basis of this evidence 
that [Anellis & Houser 1988] have suggested that Russell's 
propagandizing has altered the historian's and logician's percep
tion of the history of logic, to the extent at least that a historian 
of logic with the stature, influence, and careful scholarship of 
van Heijenoort [1967, p. vi] could easily dismiss the half-century 
of important contributions, from Boole and DeMorgan to Peirce 
and Schroeder, as a mere sidelight in the development of modern 
logic. This view of the history of logic has been the traditional 
one for most of the twentieth century, and has, as a conse
quence, indubitably influenced as well a large share of the 
research in mathematical logic that has been undertaken since 
the pUblication of Principia. 

It is only recently that the standard, "Russellian", history 
has been challenged, for example by Gregory H. Moore, who 
argued, in his [1977] review of van Heijenoort's anthology From 
Frege to Gadel, that the work ignores a large representative 
part of the history of mathematical logic. Moore's challenge to 
consider all aspects of the history of mathematical logic has been 
taken up by Moore himself [1987], [1988], who has examined, for 
the first time in a serious way, the contributions of the alge
braicists to mathematical logic within the broader development, 
and as an integral part of, the history of mathematical logic, and 
by Anellis and Houser [1988], who have examined the perceptions 
of the state of mathematical logic before the facts of its history 
had been distorted and considered the factors that led to the 
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distortions. It becomes increasingly clear that a distortion of the 
actual facts of the history of modern logic has occurred, and 
that this distortion has contributed to an alternative set of 
"facts" that have guided the history of logic since that time. It 
would also appear that the corrupted facts of the history of 
mathematical logic have influenced the subsequent development 
of logic in terms of the research which it encouraged on the 
technical level and in terms of the research which it engendered 
on the historical level. This distortion, which has undervalued 
the algebraic tradition and has relegated the algebraic re
searches of subsequent logicians, such as Tarski, to a logical 
backwater and associated that work with universal algebra 
rather than with the mainstream of mathematical logic, seems to 
have begun with, and been primarily the responsibility of, 
Bertrand Russell; and is only now beginning to be recovered. 
What still require explanations are the reasons, if any, for the 
extraordinary influence which Russell has exercised over the 
history of logic, and why it is only recently that historians of 
logic have begun to examine and to question the standard 
history which Russell and his heirs have presented. But this may 
simply be one of the imponderables of the history of mathemat
ics. Perhaps it is easier to accept, as a matter of fact, theories 
which, have become entrenched than to challenge them agai~st 
the dominant current stream. 

Conclu sian. 

The factors which contribute to the distortions and discontinui
ties of the development of mathematics, which lead to sometimes 
uneven, sometimes nonlinear, discontinuous mathematical evolu
tion, such as matters of style, of luck, of time, of fact, perhaps 
cannot be explained, but only recognized. The examples which we 
have considered, in which Bonasoni's choice of mathematical style 
caused his work on the geometricization of algebra, as a comple
ment to his colleagues' work on the algebraization of geometry, 
to be ignored, and of necessity led to the recapituation of that 
work by Descartes a generation lated, in which van Heijenoort's 
results in logic were withheld because perhaps of a nervous 
hesitancy to come forward with original results because of his 
unfortunate experience with his thesis, in which Atanasoff's 
work on the electronic digital computer was interrupted by the 
untimely intervention of external conditions, as a consequence of 
which Mauchly was able to illegally appropriate Atanasoff's work 
and gain credit for the invention of the computer, and in which 
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Russell, as new documentary evidence seems to suggest, manipu
lated the facts of the history of mathematical logic, thereby 
altering the perception of that history and very probably that 
history itself, suggest that mathematics cannot be viewed as an 
unbroken and singular enterprise, that its history does not 
proceed always in a straight line, acccording to logical rules, 
towards an ov~rarching and monolithic generalization; it sug
gests that there are, indeed, distortions and discontinuities in 
the historical development of mathematics. Many of the examples 
of these distortions and discontinuities have, undoubtedly been 
lost, either through negligence, accident, or, as was nearly the 
case, apparently, through the efforts of Russell, by design. 

Working mathematicians often see mathematics in a truer 
light than do either philosophers or historians of mathematics, 
because, as working mathematicians, they daily face the false 
starts, the intellectual puzzles, the dead-ends, the crooked 
paths, the frustrations, the pressures, of doing mathematics. At 
the same time, they also see the finished product as the final 
word. Mathematics is, after all, what the mathematicians make it. 
And in the Bourbakian style of mathematics, mathematics is the 
finished product, neatly tied and stringently presented. The goal 
becomes the reality of mathematics; a fine and finished elegant 
proof is what matters, not the search. It is the business of the 
history of mathematics to recover as much of this "lost" mathe
matics as possible, to attempt to understand how mathematics 
was done, and, "bowing to the spirit of the age" which he 
studies, to show the mathematics of an age, as much as possible, 
as it was for those who were doing that mathematics, to study 
the mistakes as well as the successes. It is the business of the 
philosopher of mathematics to explain, within the context of the 
social and philosophical milieu, the dominant influences that 
impact the choices of styles, the matters of consideration that 
shape the ways of doing mathematics, that lead to a choice 
between one set of "facts" and another. The lesson may be that 
the kinds of matters, of style, of luck, of time, of facts and 
falsehoods, cannot be predicted; for if they were predictable, 
then they would not readily lead to the kinds of discontinuities 
and distortions that our chosen examples have revealed. Moreo
ver, the cases which we have cited suggest that it is not always 
a straightforward task to differentiate between or disentangle 
the matters of style, of luck, of time, of fact, that contribute to 
this uneven, adventurous, human and social adventure called 
mathematics. But the search itself can prove to be as fulfilling 
and as exciting as the solution, both for the philosopher who 
seeks to understand it as for the historian who seeks to recover 
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and reveal it, in the same way that the search for a new piece of 
mathematics is as fulfiling and exciting for the working mathe
matician as the solution of a particularly difficult computational 
problem or the discovery of a new and brilliant theorem. 

Several years ago, at the Third Southeastern Logic Sympo
siuffip held in Charleston, South Carolina, I had the opportunity 
to hear the famous peripatetic Hungarian mathematician Paul 
Erdos give a highly personalized account of unsolved problems 
in combinatorial set theory. In his remarks, he told the oft
repeated, by now legendary, story of his encounter with GOdel at 
an airport. Their discussion eventually got to the question of 
GOdel's views about the existence of God; and GOdel is reported 
to have said that, should God exist and were he to have the 
opportunity to ask Him only one question, that one question 
would be 'Is the Continuum Hypothesis true?' The hypothesis 
says that the cardinality of the reals is aleph-one, and that 
there are no cardinals between aleph-null and aleph-one. It 
assumes that the reals can be well-ordered, so that it bears a 
connection to the Axiom of Choice. Now mathematicians have 
raised doubts about the acceptability of both the Continuum 
Hypothesis and the Axiom of Choice, largely on philosophical 
grounds. Nevertheless, the working mathematicians frequently 
assume that both are true, and frequently use them, often only 
implicitly, in their .work, because many otherwise difficult prex>fs 
can be rendered easy, straightforward, economical, with their 
use. But what the cases to which we have referred suggest is 
that the history of mathematics, like human life itself, may not 
always be well-ordered or easy. 

Iowa State University 
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