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Abstract 

To set the stage, imagine ~ dinner party on a bright day of early 
September, 1637 in Toulouse. The main course was roast lamb 
with red wine and black olives from Cnidus. The select guests 
came from ancient Greece, contemporary France and modern 
Europe. For dessert, the host had chosen what later turned out 
to be his most famous creation. Today, its flavour is know to 
every mathematician and connoisseur. The aim of this essay is ta 
study to what extent Fermat was justified in claiming that he 
also had a praof ta his Last Theorem (FLT). The aim is not to 
offer yet another modern "proof". 

Fermat's justification is studied by outlining first an histori
cal scenario of the antecedents of FLT as a working hypothesis. 
It consists of three propositions and lemmas (Props. 1-3 and 
Lemmas 1-3, with sketches of the proofs). These are elementary 
statements well within Fermat's reach and yet give a geometrical 
illustration of FLT. Their novelty is Prop. 1 first suggested in 
[13:153-154]. These antecedents are called F-ermat's heuristics. 
The power of the outlined antecedents is measured by means 

of conclusions drawn from them (Prop. 4 and Lemma 4), compar
ing the conclusions with modern results. In drawing these 
conclusions, only methods known from Fermat's own or his 
p1'edecessors' works are employed. The comparisons indicate, 
however, that Fermat anticipated (granting his heuristics con
sisted of Props. 1-3 and Lemmas 1-3) much later results. In 
particular, Prop. 4 is more general than Terjanian's result in 
1977 at C.R.Acad.Sci. Paris 285, and Lemma 1 gives a better 
bound than M. Perisastri in 1969 at Amer.Math.Monthly 76. Lemma 
4, in turn, offers a more promising way to an estimate of the 
exponent (n=p an odd prime) than Grünert's lower bound for an 
eventual solution to Fermat's equation in 1856 at Archiv 
Math.Phys. 27. These are the first mathematical results. 
Further conclusions and comparisons are made possible b~ 
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Lemmas 5-6. They transform the problem and set the question of 
Fermat's justification into a new light. LemmB 7 gathers together 
some results depending on Prop. 4. But that is only a watershed. 
A definitive answer is possible only if the final Prop. 5, FLT with 
odd exponents in one version, can be proved by Fermat's meth
ods. Aiming at the praof, Porisms 1-3 and LemmB 8 are given. 
En ter Praof Reconstruction. 

In the philosophical part, the implications of the foregoing 
heuristic, historical and mathematical considerations are outlined. 
They constitute, in our opinion, Fermat's true legacy with an 
impact on modern philosophy of mathematics and philosophical 
cosmology. In fact, this philosophical legacy runs parallel to 
Hamilton's research program which he gave up in favour of the 
quaternions (1844). Although Fermat's FLT and his Principle of 
the Least Time in optics are parts of his legacy, they are but the 
tip of an iceberg. 

FermBt's Heuristics 

It is 350 years since Fermat scribbled his "Last Theorem" (FLT) 
in the margin of his copy of Diophantus [3]. Despite recent 
advances, esp. Gerd Faltings' result (1983) and Yoichi Miyaoka's 
near-proof (1988), neither the mathematical nor the logicel ef
forts nor yet computer calculations have beep. sufficient to solve 
the problem [cf. 15:2-3]. In the beginning of our century, Hilbert 
believed that the solution will be found [8]. In mid-1930's, 
however, unsolvable problems were gathering and the Theory of 
Algorithms was developed by Church and Turing. After the 
works of Post, Markov and others (c. 1947-1952), a negative 
solution was suggested to Hilbert's Problem X by Davis, 
Davenport, Putnam and Robinson (1953-1960). In 1970 it was 
found by Ju. V. Matijasevic and G. V. Cudnovskij [13:136-7]. This 
negative solution to the decision problem of a general 
Diophantine equation, although it does not rule out the possi
bility that the particular Diophantine equation FLT could either 
be positively solved or proven impossible to solve, reduced much 
of the hope [13:153]. 

Today, especially in Analytical Philosophy, FLT is often 
quoted as an example of GOdel's "true but undecidable state
ments" [15:216-8]. This is intellectuel laziness. GOdel's result is 
of existential character and must not be used as a problem
killer. It is not worthwhile to claim conceptual command of a 
particular problem that one cannot solve. There is no rational 
reason for believing that just FLT is undecidable. 
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Other attempts having failed (sa far), we suggest an addi
tional study of Fermat's antecedents [13:153-4]. For it is fairly 
sure that he did not invent anything like the abstractions of 
modern Number Theory, and definitely did not anticipate the 
latest results of Theoretical Physics (which Miyaoka made use 
of). Ours is, therefore, a Requiem to Fermat's predecessors, in 
particular ta the Pythagoreans and Euclid, Diophantus and 
Pappus. 

There are two separate problems: (i) ta prove FLT using 
concepts and methods available ta Fermat, and (ü) ta prove FLT 
by whatever means. The present day is inclined to the latter 
approach. The former one is more demanding, probably more 
elegan t, and certainly closer to rules of fair play. 

Fermat's words about having "invented a truly remarkable 
praof" may indicate that he indeed had a proof never published, 
or he had come up with what today is called a proof-idea but 
was lacking either the technical means or the motive ta develop 
it, or his praof contained unorthodox methods not revealed. 
Among these, however, his "method of descent" hardly could be 
included as he had made use of it e.g. in proving the case p(x,4) 
+ p(y,4) t p(z,4). Finally, Fermat may have erred, just as his 
intuition had faHed with the numbers F"n [6:14-15]. 

As Fermat's note faced Diophantus' proof of the Pythagorean 
equation p(x,2) + p(y,2) = p(z,2) (Hardy and Wright say he 
"proved the substance of Theorem 255", the same case; [6:190-1]) 
concerned with right-angled triangles with integer sides, Fermat 
may well have studied whether triangles occur in other cases 
also. We show that they do. 

It can be taken for granted (cf. Pascal's words, [15:3]) that 
Fermat knew not only Diophantus but even his predecessors in 
and ou t, and in particular Euclid. Needless to say that Euclid 
was the geometer whose rigour and strategies gave the very 
paradigm for Fermat's predecessors. _ 

We begin with Euclid tao. Of particular interest, then, is the 
Pythagorean theory of triangles in Euclid's Elementa. It retains 
relics like 1.1 (construction of an equilateral triangle as if it 
were the foundation of aIl the l'est) and 1.21 (which Euclid 
proves but never uses afterwards, [7:1:377]), and construction as 
a means of existence proof. But an actual construction has a 
double l'ole: In proofs of existence [7:1:377;20] and as a culmina
tion of the heuristic method of Analysis and Synthesis [cf. 
12:120-2] in "something already known and being first in order" 
(Pappus) These roles, especially if not clearly distinguished from 
one another, may weIl account for the element of surprise in 
Fermat's characterization "a truly remarkable proof". 
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For geometrical figures are concrete and constitute the 
primary objects of understanding for Fermat's Greek predeces
sors. Higher potencies are abstract (the Greeks favoured 
squares and cubes), unless made concrete by means of geometri
cal constructions. 

That again is what we have learned to expect in Greek 
contexts: a surprising concreteness, as it were, amidst the most 
abstract thought, such as the gnomon about which a whole 
world-view is turning [17], or a combination of sliding calipers 
and a plane sun-dial in the hub of Eudoxus's astronomy [11]. It 
is compatible with early Greek ideas of aIl scientific demonstra
tion [cf. 16] and, we submit, also with Fermat. 

In particular, geometric proof and intuition were legitime 
tools for Fermat just as they had been for the Greeks. That is 
why we direct our search for Fermat's heuristies ta geometry. 
FLT, however, has implications whieh reach other fields of 
mathematies and physics as well. 

The antecedents of FLT eonsist of three propositions and 
lemmas. 

Prap. 1. If p(x,n) + p(y,n) = p(z,n) has a solution in positive 
integers and n > 2, then (x,y,z) are sides of a sealene 
triangle (0 < x < y < z). 

If z =:; x or z :s y, then p(z,n) < p(x,n) + p(y,n). Hence z > x and z 
> y. If z > x + y, then p(z,n) > p(x+y,n) > p(x,n) + p(y,n). Henee 
z < x + y. But if further x = y, then p(z,n) = 2p(x,n) = 2p(y,n) 
and z = r(2,n)x = r(2,n)y where x, y and z cannot aIl be integers. 
Hence x t y. Let x < y. Thus z > y > x. From this and from z < x 
+ y it follows that y < z + x, x < z + y, z - y < x, y - x < z and z 
- x < y. Therefore (x,y,z) are integer sides of a scalene triangle 
by Euelid's Elements I.20.QED 

In what follows we subdivide positive-side scaIene triangles, 
say (a,b,c); a > b > c > 0, into aeute-angled, right-angled and 
obtuse-angled sealene triangles (with positive sides) and define 
the equivalenees: 

Def. 1. A scalene triangle (a,b,e) is aeute-angled iff p(a,2) < 
p(b,2) + p(c,2); a > b > e. 
Def. 2. A scalene triangle (a,b,e) is right-angled iff p(a,2) = 
p(b,2) + p(c,2); a > b > e. 
Def. 3. A scalene triangle (a,b,e) is obtuse-angled iff p(a,2) 
> p(b,2) + p(e,2); a > b > e. 

As a matter of faet, Euelid's Elements distinguishes (I:Defs. 
10,11,12) acute, right and obtuse angles [17:173]; for Defs. 1-3 
see Heron's MetricB l, chA. In Euclid, the right angle and its 
simple parts suffice [17:173-7]. 
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Lemma 1. If p(x,n) + p(y,n) = p(z,n) (x <y < z) has a 
solution in positive integers and n > 2, then x, y, and z are 
integer sides of an acute-angled scalene triangle. 

As ta proof, use Prop. 1, set m = 2 below in Prop. 2 and refer ta 
Def. 1. QED 
Obviously it holds good also that 

Lemma 2. If p(x,n) + p(y,n) = p(z,n) has a solution in 
positive integers and n > 2, then there is the smallest 
acute-angled triangle (a,b,c) such that gcd(a,b,c) = 1 and a 
) b > c > 0 and the integers a, b, c, n also constitute a 
solution, the acute-angled scalene triangle (z,y,x) from 
Lemma 1 being a multiple of it. 

In the se quel we focus on the smallest integer solution (a,b,c,n). 
Prop. 2. If p(a,n) = p(b,n) + p(c,n) has a solution in positive 
integers and n > 2 (a > b > cl, then (p(a,n- l),p(b,n-
1),p(c,n-1» ... (p(a,2),p(b,2),p(c,2» are triangles and 
(p(a,n-1) > p(b,n-1) > p(c,n-1) > 0) ... (p(a,2) > p(b,2) > 
p(c,2) > 0) integers. 

If p(a,n-1) ~ p(b,n-1) + p(c,n-l), then p(a,n) = ap(a,n-l) ~ 

ap(b,n-1) + ap(c,n-l) > p(b,n) + p(c,n) as a > b > c. Rence 
p(a,n-l) < p(b,n-l) + p(c,n-l). By similar proofs, if p(a,m) ~ 
p(b,m) + p(c,m) where n-1 > m > 1, then p(a,n) > p(b,n) + p(c,n) 
as a ) b > c. Hence p(a,m) < p(b,m) + p(c,m). Furthermore, 
p(a,n-l) > p(b,n-l) > p(c,n-l) and p(a,m) > p(b,m) > p(c,m), 
beca.use a > b > c. From these it follows (quite as in Prop. 1) that 
aIso aIl integer powers of a,b,c up te the power n-1, are integer 
sides of triangles (by Elem. 1.20). QED 
We say that the triangle (a,b,c) in Prop. 2 is (n-l)-potent and 
define : 

Def. 4. A scalene triangle (a,b,c) is n-patent iff a > b > c 
and p(a,n) < p(b,n) + p(c,n). 

Equilateral triangles are (m)-potent; right-angled and obtuse 
triangles are (l)-potent. Within a given perimeter a+b+c an 
acute-angled triangle (a,b,c) has its highest potency when a = 
b+l and c = b-l, but in that case p(a,n) = p(b,n) + p(c,n) (n>2) 
has no integer solutions [4]. The outcome of ail this is that (n) is 
not an independent variable. lts value depends both on 2h = 
a+b+c and on how far apart a,b,c are from one another. We know 
that if FLT fails, a-b < c and b-c < a (Prop. 1). lnkeri and Ryyro 
[9] in fact came very close ta this in their restriction z-y, y-x < 
M, where M > 0 is given in ad vance [15:25]. Under this restric
tion, [9] anticipates Gerd Falting's result (1983): there are at 
most finitely many integer solutions to p(a,n) = p(b,n) + p(c,n) 
when n > 2, if any solutions at aIl. 
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Prop. 3. For a (n-1)-patent scalene triangle (a,b,c) where a 
> b > c > 0 and n > 2 and gcd(a,b,c) = 1, none of its integer 
powers k :$ n-1 is a right-angled triangle with integer 
sides. 

The proof foHows from Diopohantus's proof. Recall the charac
terization of right-angled triangles with p,q. Now suppose the 
claim does not hold and we find a right-angled triangle 
(p(a,k),p(b,k),p(c,k», where 1 < k :$ n-1, in the sequel Hence a = 
r(p(p,2)+p(q,2),k), b = r(2pq,k) or b = r(p(p,2)-p(q,2),k) and c = 
r(p(p,2)-p(q,2),k) or c = r(2pq,k), where p,q are relatively prime 
integers not both odd and p > q. Thus a, b,c cannot aH be 
integers. A contradiction; hence the claim is proven. QED 

Lemma 3. For a (n-l)-patent scalene triangle (a,b,c) where a 
> b > c > 0 and n > 2 and gcd(a,b,c) = 1, the highest 
integer potency (n-1) is an obtuse-angled triangle with 
integer sides. 

The proof follows from Prop. 3 and from the truth that if we 
have an acute-angled triangle (p(a,k),p(b,k),p(c,k» which is a 
potency of (a,b,c) and where 1 :$ k < n-1, then also 
(p(a,2k),p(b,2k),p(c,2k» where 2 :$ 2k :$ n-1, is a triangle (by 
Def. 1). If k is the highest potency that belongs to an acute
angled triangle, then 2k :$ n-1 and n-1 cannot belong to an 
acute-angled triangle nor ta a right-angled triangle. This proves 
the claim. QED 

By way of a summary, then, if FLT fails and p(a,n) = p(b,n) + 
p(c,n) where n > 2 has a solution in pasitive integers, then there 
is a scalene acute-angled (n-1)-patent triangle (a,b,c) where a > 
b > c > 0 and gcd(a,b,c) = 1. The rising potencies are repre
sented by scalene triangles of inereasing apex angle and change 
from acute-angled to obtuse-angled, but none of the rising 
integer patencies is represented by a right-angled triangle with 
integer sides. 

Anticipating our subsequent discussion, this must have been 
Fermat's pivotal heuristic vision. Because there is no right
angled integer-side triangle with an integer exponent, but it is 
possible that sorne equal powers of (a,b,c) are sides of a right
angled triangle, one must consider non-integer potencies also. 
On the other hand, if we postulate a non-integer poteney of 
(a,b,e) that is a right-angled triangle, then there cannot be any 
other non-integer potency of (a,b,c) that is a right-angled 
triangle. Here we have a seed of reductio ad absurdum, awaiting 
the proof. 

In the last part of the heuristic analysis, we make use of 
Elem.I.21 and put aU the triangles that are poteneies of a 
(n-I)-potent sealene aeute-angled triangle (a,b,c) on the same 
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Bcale with (a) as their common base (a > b > c). For a general 
view, integer potencies suffice. 

Next, by means of elementary Euclidean constructions (taking 
one side in turn as the base and changing the other two sides, 
bisecting an angle, and drawing transversals parallel with the 
sides) we construe on the base CB = a the points of division (see 
Fig. 1) a:b, a:c, b:c, c:b, c:a and b:a. 

A 

4- Apollonius' Cirele 

CB = a > CA = b > BA "" c 

GB .. C"Ia-' 
CK .. bn/on-' 

J?:::-----~~~':-~----_7J. B CH." bn/ca-' 
. BE ... c"/ba-' 

BH ... BA· a c-'lan-2 

CE "" CA· ., b-'Ion-' 

Complementing the triangles (a,b,c) ... (p(a,n-l),p(b,n-l), p(c,n-
1», now put on the same scale, one by one into parallelograms, 
we have made an escalator. It brings us algoristically from any 
potency of (a,b,c) to the next, and even up to the (nth) potency. 
Conversely, in the heuristic synthesis, it brings us algoristically 
downwards, down to the first potencies again. In aIl these 
operations, rational lines remain rational. 

We now focus on the highest power (n-l) represented by an 
obtuse-angled triangle (LemmB 3) CA*B = (a,p(b,n-l)/p(a,n-2), 
p(c,n-l)/p(a,n-2», and complement it into the parallelogram 
CA*BF by construing another, identical triangle. The Une FG 
through the point of division a:c cuts the portion GB = 
p(c,n)/p(a,n-l) off BA*, and the Une FK through the point of 
division b:a cuts the portion CK = p(b,n)/p(a,n-l) off CA*. The 
line through the point of division b:c and F cuts the portions 
(p(c,n)/bp(a,n-2» off BA* and (p(b,n)/cp(a,n-2» off the exten
sion of CA*. 

Finally, we construe the triangles CHB = (a,p(b,n)/cp(a,n-2), 
p(c,n-l )/p(a,n-2» and CEB = (a,p(b,n-l )/p(a,n-2), p(c,n)/bp(a,n-
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2» and bisect their vertex angles thus obtaining (by Elem.VI.3) 
twice the point of division D = (p(b,n):p(c,n». Apollonius' Circ1e, 
therefore, runs via the points D, E and H. 

It remains to show that the triangles CKD and BGD are not 
both isosceles (Fig.2), and FLT is proven. 

A 

1,\ 

if aP - b- + CI' (a ) b ) C ) 0) 
then CK - CD and BG - BD and 
CD + BD - CB - a, as 
CK - "bP/a-' and 
BG - CI'/a-' (cf • .Ba:.J) 

1 
1 

2 p 1 b + c - a (lemma 4) 

1,1 KD 1 A"S and 17 Il GD Il AOR; 
CK Il C7AI Il SIGI and 
SG Il SIAl 1 CUQ 

triangles CA"B"E OA1Bl == CKlO E B1G1B 
and CA"S =='CKD 
and BA"~ E:SGD 

We postpone the question of a praof tDward the end of the essaye 
In the meantime, we hope we have been able ta clarHy Fermat's 
way of reasoning, as indeed aU the clues into it extraeted from 
the original source, have been utilized [cf.l:289-306 and 2]. In 
case we have correetly interpreted Fermat's heuristies, however, 
we have gained inside information," tao. Let us use it. 

First results 

Prop.4. If p(a,n) = p(b,n) + p(c,n) has a solution in positive 
integers and n > 2, then the exponent n is odd and 
(b+e) Ip(a,n). 

The proof follows from Prop. 3 in a few steps. (a,b,e) is an 
(n-1)-potent acute-angled scalene triangle (a > b > c > 0) by 
Prop. 2, and by Lemma 2 ged(a,b,e) = 1. Let k ~ 1 be the 
exponent of the highest acute-angled poteney of (a,b,e), repre
sented by the triangle (p(a,k),p(b,k),p(e,k». Renee 
(p(a,2k),p(b,2k), p(e,2k» is still a triangle (and obtuse-angled 
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by LemmB 3) and p(a,2k) < p(b,2k) + p(c,2k) by Def. 1. The next 
potency of (a,b,c) with the exponent k+1, is represented by an 
obtuse-angled triangle (p(a,k+1),p(b,k+l),p(c,k+1» by Prop. 3. 
Hence p(a,2k+2) > p(b,2k+2) + p(c,2k+2) by Def. 3. Thus if p(a,n) 
= p(b,n) + p(c,n), then 2k < n=2k+1 < 2k+2, and n = 2k+1 is odd. 
Hence p(b,n) + p(c,n) = (b + c)(p(b,n-l) - p(b,n-2)c + ... -
bp(c,n-2) + p(c,n-1»), and (b + c) Ip(a,n) (where b+c > a > b-c by 
Prop. 1). QED. 

In December 1977 Terjanian proved an equivalent result for 
the first case of FLT (it holds for the exponent p when there do 
not exist integers x,y,z ail different from zero, such that p t xyz 
and p(x,p) + p(y,p) = p(z,p», viz. if x,y,z are nonzero integers 
such that p(x,2p) + p(y,2p) = p(z,2p), where p is an odd prime, 
then 2p divides x or y [18:973-975; cf.15:65]. Prop. 4, however, 
holds also for the second case of FLT (it holds for the exponent 
p when there do not exist integers x,y,z ail different from zero, 
such that p 1 xyz, gcd(x,y,z) = 1 and p(x,p )+p(y ,p) 1 p(z,p». 

According to Ribenboim [15:26-7,66], Terjanian's result (1977) 
was the best on even exponents. By Prop. 4, therefore, Fermat 
not only anticipated but rusa exceeded the most recent results in 
this direction. Fermat's Method of (Infinite) Descent, which he 
used in proving the separate case p(x,4) + p(y,4) = p(z,4) and 
many other propositions with great success, provides an alter
native ta Prop. 4 in attacking FLT (see below). 

If FLT holds for an exponent n, then it holds also for any 
multiple of n. And since every integer n ~ 3 is a multiple of 4 or 
of a prime p t 2, it suffices ta prove FLT for n = 4 and for 
every prime p t 2. These easy observations [cf. 15:3] must have 
been made by Fermat, tao, because he actualiy proved the case n 
= 4 [cf. 3,II,Ch.xxii]. Hence we can restrict ourselves ta expo
nents n = p, where p is an odd prime. 

Considerations of parity show that if p(a,n) = p(b,n) + p(c,n), 
then 2h = a+b+c is even, and as gcd(a,b,c) = 1 by Lemma 2, one 
and only one of a,b,c is even. Without loss of generality [15:36], 
a,b,c are also pairwise relatively prime. 

Lemma 4. If p(a,p) = p(b,p) + p(c,p) has a solution in 
positive integers and p > 2 is a prime, then 2p 1 b+c-a. 

The proof follows from Fermat's Theorem (FT, 1640): if p is a 
prime and p t r, then p(r,p-1) == 1 (mod pl; Fermat, of course, 
spoke of divisibility. Multiplying both sides of the congruences 
p(a,p-1) :: 1 (mod pl, p(b,p-1) == 1 (mod p) and p(c,p-1) == 1 (mod 
p) where p is a prime and p t abc, by a,b and c respectively, we 
obtain p(a,p) == a (mod pl, p(b,p) == b (mod p) and p(c,p) == c (mod 
p). Between these two groups of three, the first and the second 
and the third congruences are pairwise equivalent when p t abc 
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and the latter three are trivial when p 1 abc [6:63 J. From the 
latter three congruences it follows p 1 p(a,p) - p(b,p) - p(c,p) + 
b + c - a and, if p(a,p) = p(b,p) + p(c,p), p 1 b + c - a. Since b + 
c - a is even because of parity when p(a,p) = p(b,p) + p(c,p), 
and p odd by Prop. 4, it follows that 2p 1 b + c - a. QED. 

FT which Fermat stated in 1640 (Oeuvres,ii:209), was proved 
by Euler in 1736 and generalized in 1760 [3,I,Ch.üi]. We do not 
consider it anachronistic, however, ta include FT inta Fermat's 
arsenal when he claimed to have a praof of FLT: it is even a 
plausible candidate for an "unorthodox method not revealed"in 
1637. 

In 1856 Grünert proved that ü 0 < x < y < z are integers and 
p(z,n) = p(x,n) + p(y,n), then x > n [5:119-120;cf. 15:226], where 
n is given. Since then, much better lower bounds for eventual 
solutions ta Fermat's equation p(z,n) = p(x,n) + p(y,n) have been 
found with elementary methods also. Yet, ta quote Ribenboim 
[15:227], "conceptually, the se results do not throw any more 
light onto the problem". In this respect, Fermat's 2p 1 b + c - a 
from Lemma 4 is a more promising bound than Grünert's (see 
below). 

From Grünert's proof it follows [15:226] y < z < y + x/n < y(l 
+ lin) and hence z, y are relatively close tagether; therefore the 
size of x should be much smaller. On the other hand, M. 
Perisastri showed in 1969 that x cannot be much smaller than z: 
z < p(x,2) [14:671-675]. But in an acute-angled triangle (z,y,x) 
where z > y > x > 0 (Lemma 1), p(x,2) + p(y,2) > p(z,2) by Def. 1, 
and thus p(x,2) > (z + y)(z - y) = (z + y)r where x > z - y = r ~ 
1. Bence z < p(x,2)1 r - y < p(x,2) or a better bound still. 
Perisastri's bound z < p(x,2) does not exlude all obtuse-angled 
triangles with integer sides. It is, therefore, less stringent than 
Lemma 1. 

It is a natural continuation to proceed from Prop. 4 and 
Lemma 4 toward an analysis of the exponent p, using the meth
ods of Elementa VII-IX. It is unnecessary ta reproduce Euclid's 
notation, however. 

As a,b,c are pairwise relatively prime (without loss of gene
rality), the sum of any two and each summand are likewise (by 
Elem. VII.28). But (b+c) and p(a,p) are not relatively prime, and 
neither (b+c) nor (a) a prime. For if (b+c) were a prime and 
since (b+C) 1 p(a,p) (by Prop. 4), then (b+c) 1 a (by Elem. VII.30 
= [6:Theorem 3]), which is impossible because b+c > a (by Prop. 
1). Thus (b+C) 1 p(a,p) but (b+c) t a. On the other hand, (b+c) 
cannot be a multiple or a higher power of (a) either. Since a > b 
> c are positive integers (by Prap. 1), within any perimeter 2h = 
a + b + c, it holds that b+c ~ b + (b-1) and a ~ b+1. Rence a < 
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b+c < 2a-2 < 2a. On aU these grounds, then, (b+c) 1 p(a,p) 
implies that both (b+c) and (a) are composite, all prime factors of 
(b+c) are also prime factors of (a) but not conversely, and at 
least one prime factor of (b+c) has a higher exponent than the 
corresponding prime factor of (a). 

According to Euclid, "any number either is a prime or is 
measured by sorne prime number" (Elem. VII.32, equivalent to 
[6:Theorem 1]) and "can only be resolved into prime factors in 
one way" (Elem. IX.14, equivalent to [6:Theorem 2], the Funda
mental Theorem of Arithmetic). Let (a) be expressed in the 
standard form: a = p(pA1,m"'l)p(p .... 2,m .... 2) •.. p(p .... k,m ... k); m .... l > 0, 
m"'2 > 0, ••• , m .... k > 0; p"'l < p"'2 < ••• < p"'k. Let further aU the 
prime factors of (a) be divided into two sets 80 that p"'î .•. p"'j 
are not prime factors of (b+c) while the rest pAr •.• p"'w are also 
prime factors of (b+c). Thus b+c = p(p .... r,n ... r) •.• p(p ..... w,n .... w). 
Next, let the prime factors of (b+c) be subdivided into three sets 
so that for p"'r ••• pAs the exponents nAr > m"'r, ••• , nAs > mAs; for 
p"'v ••• pAw the exponents mAv > n ..... v, ••• , m .... w > n"'w; and for the 
rest pAt .•• P ..... u the exponents are equal m"'t = n"'t, ••• , mAu = n .... u. 
Finally, let gcd (b+c,a) be extracted. 

Thus b + c - a = (p(p ..... r,n .... r) ••• p(p ..... w,nAw» - (p(p .... r,m ... r) ••• 
pep .... w,m .... w» (p(p "'i,m .... i) .•• p(p ..... j,m ..... j») and gcd(b+c,a) = 
pep ..... r,min(n"'r,mAr» pep ..... w,min(n"w,m"w» and (b+c-
a)jgcd(b+c,a) = A, where A = (p(p ..... r,n .... r-m"'r) ••• p(p"'s,n"'s-m"s» 
- (p(p"v,m .... v-n"'v) ••• p(p"'w,m"'w-n"'w»)(p(p"i,m"ï) ••• p(p"'j,m ..... j», 
and A > 0 because b+c > a (by Prop. 1). If for all the exponents 
n ..... r .•• n"'w, m ..... r .•• m ..... w it holds that min (n ..... r,m .... r) = mAr, ••• , 
min(n .... w,m"w) = m ..... w, then the formula for A is simpler : A = 
(p(p .... r,n"r-m"r) ••• p(p ... w,n"w-m ..... w» - (p(p"'i,m"'i) ••• p(p .... j,m" j» 
> O. In bath cases, let A be expressed in the standard form as A 
= p( q .... l,l"l )p( q .... 2,1 .... 2) ••• p( q .... f,l"f). 
From Prop. 4, LemmB 4 and the argument above we obtain 

LemmB 5. If p(a,p) = p(b,p) + p(c,p) has a solution in 
positive integers and p > 2, then (a) and (b+c) are compos
ite, b+c = p(p .... r,n .... r-m .... r) ••• p(p"'w,n .... w-m .... w) is composed 
solely of prime factors of a = (p(p .... r,m .... r) ••• p(p .... w,m"'w» 
(p(p"i,m"i) ••• p(p" j,m ..... j» but not conversely, at least for 
one pair of the exponents n .... r ••• n .... w, m .... r ••• m .... w, it holds that 
n .... r > m ..... r J ••• , or n ...... w > m"'w because a < b+c < Za-2, and (a) 
p 1 gcd(b+c,a) and p is one of the primes p .... r, ••• ,p .... w or (13) 
p A, where A = (b+C-a)jgcd(b+c,a) = p(q"'1,l"I)p(q .... 2,l" .. 2) ••. 
p(q .... f,l"f) > 0 is a function of the prime factors of (a), and 
p is one of the primes qAI, qA2, ••• , qAf. 

This result transforms the main problem of Fermat's justifi
cation into a search for an odd prime (p) dependent on the prime 
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factors of (a) alone. Let us see, how far Prap. 4 will take us. 
It is appropriate ta make sorne comments on the two alterna

tives: (a) p 1 gcd(b+c,a) or (13) piA (from LemmB 5); their 
relationship is discussed after LemmB b. 

If p 1 gcd(b+c,a), then p 1 b+c and pla but, because a,b,c 
are pairwise relatively prime (without loss of generality), p t bc. 
This corresponds to the Second Case of FLT (p 1 xyz, gcd(x,y,z) 
= 1) in a sharper form: if the Second Case fails, then p is one of 
the primes p"r, ••• ,p"'w. Since p t bc, p 1 p(b,p-1) - 1 and p 1 
p(c,p-1) - 1 (by FT, 1640), and of course p 1 p(a,p-1). Therefore 
alao p 1 p(b,p-1) - p(c,p-1), p 1 p(a,p-1) + p(b,p-1) - p(c,p-1) 
and p 1 p(a,p-1) - p(b,p-l) + p(c,p-1). 

In the second alternative, if piA, then A t abc for other
wise the First Case of FLT cannot fail. Hence p 1 p(a,p-1) - 1, p 
1 p(b,p-l) - 1 and p 1 p(a,p-1) - 1 (by FT, 1640), and also p 1 
p(a,p-1) - p(b,p-l), p 1 p(a,p-1) - p(c,p-l), p 1 p(b,p-1) -
p(c,p-1), p 1 p(a,p-1) + p(b,p-1) - p(c,p-l) - 1, p 1 p(a,p-l) -
p(b,p-1) + p(c,p-1) - 1 and p 1 p(b,p-1) + p(c,p-l) - p(a,p-1) - 1 
but p t p(b,p-1) + p(c,p-l) - p(a,p-1) (cf. Fig. 2, where RS = 
(p(b,p-1) + p(c,p-1) - p(a,p-1»/p(a,p-2». 

It is plain that in the search of p, the size of b+c-a is 
reducible: if 2p 1 b+c-a, then 2p 1 (b+c- a)/(p(p"'r,min(n"'r,m"'r)-
1) ••• p(p "'w,min(n"'w,m"'w)-l» (p(q'ï,l"1-1) ... p(q"f,l"f-l» = 
(p"'r ..• p"'w)(q"1. •• q"'f). In case (a) is odd, (qA1) = 2. In case (a) is 
even, (p"l) = 2 and (p"'l) is the smallest one of the primes 
p"'r ••• p"'w, for otherwise b+c-a were odd which is impossible 
because of parity; if further n"'l = m"l also (q"'l) = 2, otherwise 
(qA1) is an odd prime. 

Given (b+c) and (a), FLT ,does nat fail, therefore, if (b+c) or 
(a) is a prime, if they are not of the same parity, or if not a < 
b+c < 2(a-l). The First Case of FLT does nat fail if gcd(b+c,a) or 
(p"'r ••• p"'w) = 1 or any power of 2. The Second Case of FLT does 
nat fail if A or (q"'1. .• q"'f) = 1 or any power of 2. Given p, FLT 
does nat fail if p 1 b or pic. Given a,b,c, one recal1s, FLT does 
nat fail if (a,b,c) is an odd-potent triangle (by Prap. 4 and Def. 
4). All the se restrictions have an eliminative character, but they 
do not prove FLT even if combined. 

U sing the sarne notation and the parity of (a) as a pilot 
study, one can further complement the findings of LemmB 4 and 
LemmB 5. 

If pla (and p t bc) where p = 2k+ 1 an odd prime, then p is 
one of the primes pI ••• p"k, i.e. one of the primes (p"'i ••• p" j), 
(pAr ••• p"'s), (pAt. •• p"'u) or (p .... v ••• p,..w). The first subset (p"'i ••• p .... j) 
is excluded by LemmB 5, however, as none of the primes 
(p"'i ••• p"'j) divides gcd(b+c,a) or A. Hence one can complement 
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Lemma 4 with 
Lemma 6. If p(a,p) = p(b,p) + p(c,p) has a solution in 
positive integers, p ) 2 is a prime and pla and gcd (b+C,a) 
= 1, then 2p 1 a+b+c. 

This states the equivalence pla iff p 1 b+c as pla iff p 1 
a/p(p"i,m"i) ..• p(p"j,m" j). 

If P is one of the primes (p"r ••• p"s), (p .... v ••• p"w), then by 
Lemm.a 5 p 1 gcd(b+c,a) and p t A. If p is one of the primes 
(p .... t ... p"u), then p 1 gcd(b+C,a) and either p t A or piA; piA 
provided (b+c)/gcd(b+c,a) = (p(p .... r,n .... r-m .... r) ••• p(p .... s,n .... s-m .... s» 
and a/gcd(b+c,a) = (p(p .... v,m .... v- n .... v) ••• p(p .... w,m .... w-
n .... w» (p(p .... i,m .... i) .•. p(p .... j,m .... j» are representatives of the same 
residue class (mod p). In that case 2p(p,2) 1 b+c-a. 

If p t abc, then p is none of the primes p"l ••• p .... k and p t 
gcd(b+c,a) but, by Lemma 5, pIA = p(q ... l,l"l) ... p(q .... f,l""f). In 
this case (b+c)/gcd(b+c,a) and a/gcd(b+c,a) must be representa
tives of the same residue class (mod p) or the First Case of FLT 
cannat fail. To sum up : if (a), then either (B) or not (Il); if not 
(a), then (13); pla iff (a). 

As a corollary of Lemmas 5-6, we can give a proposition in 
the positive tone. To fix the notation, let p = p"r in the first 
alternative and p = q"f in the second alternative of Lemma 5; the 
corresponding exponents are m"r, rf ~ 1. Then the following 
proposition holds good 

Lemma 7. If p t 2 and if a > b > c > 0 are relatively prime 
integers such that p(a,p) = p(b,p) + p(c,p) and p t abc, 
then b+c-a == 0 (mod p(p,l"f»; and if pla, then b+C±a == 0 
(mod p(p,m .... r». Moreover, if pla, then p(p,m .... r) 1 a. 

Parts of our argument and partial analogous results are scat
tered in the literature. See, for instance, Vandiver's application 
of Furtwangler's theorem : "If p t 2 and if x,y,z are relatively 
prime integers such that p(x,p) + p(y,p) + p(z,p) = 0, then p(x,p) 
== x, p(y,p) == y, p(z,p) == z (mod p(p,3» and x+y+z == 0 (mod 
p(p,3». Moreover, if p 1 z, then p(p,3) 1 z", in [19:73-80] where 
methods of Class Field Theory are used on the Second Case of 
FLT [cf. 15:170]. We have not seen such arguments and results 
gathered anywhere as they are in Lemmas 5- 7, and never de
duced from Fermat's premisses by contemporary methods. Yet 
this is only a watershed: odd exponents await us. The momentum 
of Prop. 4 is vaning here. 

Further Problems 

We are now in the position to suggest a strategy of proof 
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possible for Fermat. In case his premisses consisted of Props. 
1-3 and Lemmas 1-3, he could first show (by Lemma 5) that, if 
FLT fails, then the exponent p, an odd prime, is (a) one of the 
primes pAr, ..• , p"'w when p I a or (13) one of the primes q"'1, ..• , 
q"f when p t abc. Next, given a,b,c he could determine, indepen
dently of Lemma 5, the highest potency of the acute-angled 
scalene (n-l)-potent triangle (a,b,c) starting from Prop. 2 and 
Lemma 3. Finally, Fermat could try to show that p = (n-l)+1 is 
none of the primes pAr, ••• , pAW, qAl, •.. , qAf eventually estab
lishing a contradiction. If that succeeds, then FLT is proven. 
This is an arithmetical strategy, and it is well known that 
Fermat's predilections were arithmetical. 

It was stated earlier (following Del. 4) that the potency of an 
acute-angled scalene triangle (a,b,c), where a > b > c > 0, 
depends both on the perimeter a+b+c = 2h which must be even 
because of parity, and on how far apart a,b,c are from one 
another. Consider now all scalene integer';"'side triangles with the 
even perimeter 2h. They can be illustrated as a subset of points 
in a Pythagorean discrete-point equilateral triangle (Fig. 3). 

py1;hagorean trianguJ.8J! nUD.bers generating a discrete··spac. 

Inside the frB.II.e ABl the fo1l.owin& triangles: 

14.12.4 
14,ll,5 ~ 
l.:4.13.31 
14,10,6 

~B:t~j~ 
g~:~?b1 E' 

A~ ____ a_sb_~_c ________ ~B 

(12,11,7) (2)-potent 
(12,10,8) (2)-potent 

(u:;:0,9) (4) -potent 
-for. these alone it 

DETAIL 

holds a,. b > c ,. 0 •••• • • • 
In this eXB.II.p1e • • • • • • • • 
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..a 
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A,~ ____ ~~~ ______ ~ 
h.!C;+b+C) 

PQ·h-a 

PR.h-b 

ps·h-c 

E 
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Let a = h-(h-a), b = (h-(h-a» - (a-b) and c = 2(h-a) + (a-b). If 
(a,b,c) is acute-angled, then by Def. 1 p(a,2) < p(b,2) + p(c,2). 
This is the case when (b+c-a)/2 = h-a > (l/4)(-3(a-b) + r(p(a
b,2) + 8h(a-b),2». The corresponding curve and even an ap
proximate algorism can easily be construed. Using Cardano's 
Rules, similar operations can be carried out for third and fourth 
potencies of (a,b,e). That is the end of the road, however, and 
LemmB 4 is of no more help. 

There is also another possible strategy of praof, more geo
metric per haps. 

We draw a parallel Gel ta CK and another parallel KGl ta BG 
(see Fig. 2). By Elementa. VI.2 the sides A*B and CB are divided 
proIX>rtionally at G and Cl, and the sides A*C and BC at K and 
Bl. Thus CCI = a-c and BBI = a-b. (Conversely, we can cut the 
segments CCI = a-e and BBI = a-b off the line CB = a, obtaining 
the parallels CIG Il CA* and GlK j 1 BA*.) Thus the line segment 
ClBl = b+c-a, which is divisible by 2p (Lemma 4). 

If p(a,p) = p(b,p) + p(c,p) (a > b > c > 0), the triangles CKD 
and BGD are isosceles and CK = CD = p(b,p)/p(a,p-l) and BG = BD 
= p(c,p)/p(a,p-l). If we then draw parallels l"'1 Il KD Il A*S and 
1"2 Il GD 1 j A*R, aIso the sides A*B and RB are divided (Elem. 
VI.2) proportionally at G and D, and the sides A*C and SC at K 
and D. 

Thus we cao transfer unaltered any line segment from CA* ta 
CS and vice versa by means of parallels ta 1"'1, and any line 
segment from BA* ta BR and vice versa by means of parallels ta 
1"2. Again, by means of parallels to GlK and ta ClG, we can 
transfer, without altering their divisibility, a line segment from 
CB to CA* and BA*, and vice versa - provided proper care is 
taken of their scale. For instance, in the triangle CIAlBl similar 
ta the triangle CA*B, 2p 1 b+c-a = CIBl, but CIAl = KIK = 
(b+c-a) p(b,p-l)jp(a,p-l) and BlAl = GIG = (b+c- a)p(c,p
l)/p(a,p-l) are on a different scale. 

This simple geometrical machiner y is based on proportionality 
and on the geometrica1 illustration of FLT: if FLT fails, then the 
triangles CKD and BGD are both isosceles. Restricting one self ta 
line segments that are divisible by p (IX>inted out in the discus
sion after LemmB 5), it is possible to conceive of geometrical 
operations both orthodox and unorthodox, taward an estimate of 
the exponent p. It seems ta us that the First and Second Case of 
FLT must be dealt with separately. 

In the Second Case, for instance, one could begin with 2p 1 
b+C-a (Lemma 4) and applyon (b+C)-(a) methods akin ta Elementa 
X.2, attempting to prove a stronger result than Lemma 5, viz. 
that p is not an integer. In the last step, also the propositions 
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Elementa IX.16-17 can be made use of. Although LemmB 4 and 
LemmB 6 are at one's disposal here, no corresponding results can 
be obtained for the other two Heronic (actually Archimedean, cf. 
[7, vol. ü:322]) constituents (a-b+c), (a+b-c). Hence this is one 
more cul-de-sac; we have not been able to find any promising 
continuation in this direction. 

We have, however, one more possible strategy of praof ta 
offer. 

An Ancient StrBtagem 

We recall that aince Fermat himself had proven the case p(x,4) + 
p(y,4) 1- p(z,4), it is sufficient to prove FLT for ail odd prime 
exponents. By Prop. 4, it is sufficient to prove FLT for ail odd 
exponents, say, of the form 2k+ 1. This gives rise ta a proof-idea, 
perhaps the simplest of them all. If a > b > c are integer sides of 
a (2k)-potent acute-angled scalene triangle and p(a,2k+l) = 
p(b,2k+l) + p(c,2k+l), then (p(a,(2k+l)/2), p(b,(2k+l)/2), 
p(c,(2k+l)/2» is a right-angled triangle, and conversely. The 
exponents are arithmetical means of two consecutive integers 
k+l,k (k ~ 1), and the sides of the right-angled triangle thus 
geometric means of sides of an acute-angled triangle 
(p(a,k),p(b,k),p(c,k» and of an obtuse-angled triangle 
(p(a,k+l),p(b,k+l),p(c,k+l», which are themselves potencies of 
the (2k)-potent acute-angled triangle (a,b,c). It suffices, there
fore, ta prove the following proposition. 

Prop. 5. If a > b > c > 0 are pairwise relatively prime 
integers and sides of an acute-angled triangle such that 
p(a,k), p(b,k), p(c,k) are sides of an acute-angled triangle 
and p(a,k+l), p(b,k+1), p(c,k+1) are sides of an obtuse
angled triangle and their geometric means are sides of a 
right-angled triangle, then 2k is not an integer. 

The rest of the formaI part of this essay pertains to that. 

Proof-ideBS 

Suppose the opposite: k, k+ 1 are two consecutive integers where 
k ~ 1, a > b > c > 0 are pair wise relatively prime integers and 
sides of an acute-angled (2k)-potent scalene triangle such that 
p(a,k), p(b,k), p(c,k) are sides of an acute-angled triangle, 
p(a,k+1), p(b,k+1), p(c,k+1} are sides of an obtuse-angled tri
angle and their geometric means p(a,(2k+1)/2), p(b,(2k+1)/2), 
p(c,(2k+1)/2) are sides of a right-angled triangle. 
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We note first that the sides of the right-angled triangle are 
not aU integers. For if p(a,(2k+1)/2) = pep ,2)+p( q ,2), 
p(b,(2k+l)/2) = 2pq or p(p,2)-p(q,2), and p(c,(2k+1)/2) = p(p,2)
p(q,2) or 2pq, then a = r(p(p,2)+p(q,2),(2k+1)/2), b or c = 
r(2pq,(2k+1)/2) and c or b = r(p(p,2)-p(q,2),(2k+1)/2) where p, q 
are relatively prime integers not both odd and p > q. By 
Diophantus's proof, p(p(p,2)+p(q,2),2), p(2pq,2) and p(p(p,2)
p(q,2),2) are squares of integer sides of a right-angled triangle 
and squares of a primitive triple. But 2k+1 ~ 3 is odd: a, b, c 
cannot all be integers; a contradiction. This complements Prap. 3. 

Second, since the right-angled triangle is, considered side 
by side, the geometric mean between the obtuse-angled triangle 
(p(a,k+l),p(b,k+1),p(c,k+1» and the acute-angled triangle 
(p(a,k),p(b,k),p(c,k», it is also the geometric mean between the 
triangle (p(a,2k),p(b,2k),p(c,2k» which is obtuse-angled by 
Lemma 3 J and the acute-angled triangle (a,b,c). By the saIDe 
token, the right-angled triangle is the geometric mean between 
the obtuse-angled triangle (p(a,2k+1),p(b,2k+1),p(c,2k+1» where, 
as FLT fails, the obtuse apex angle = 180 0

, and the acute-angled 
triangle (l,1,1); and by the counterassumption FLT fails il 
(p(a,(2k+1)/2),p(b,(2k+1)/2),p(c,(2k+1)/2» is a right-angled tri
angle, and conversely. One can accept the obtuse-angled triangle 
with the apex angle = 180 0 as an extreme case of obtuse-angled 
triangles, but the acute-angled triangle (1,1,1) is equilateral; it 
indicates, in the right-angled triangle assumed to be the geo
metric mean between two consecutive integer potencies of a 
sCBlene triangle (a,b,c), one of the potencies being an acute
angled triangle and the other an obtuse-angled triangle, contra
dictio in Bdjecto. 

Third, we now capitalize on the contrBdictio in Bdjecto dis
covered, relating the geometric means (p(a,k+1/2), p(b,k+1/2), 
p(c,k+ 1/2» to the harmonic and arithmetical means of 
(p(a,k),p(b,k) ,p(c,k» and (p(a,k+ 1) ,p(b,k+ 1) ,p(c,k+ 1». 

By the Pythagorean "most perfect, or musical, proportion" 
[7:86],(where A = p(a,k+1)+p(a,k), B = p(b,k+1)+p(b,k), C = 
p(c,k+l)+p(c,k) ): 

p (a,k) : 2p(a,2k+1)/A = A/2 : p(a,k+1) where p(a,k) < 
p(a,k).2a/(a+1) < p(a,k).(a+1)/2 < p(a,k+l), 
p (b,k) : 2p(b,2k+1)/B = B/2 : p(b,k+1) where p(b,k) < 
p(b,k).2b/(b+1) < p(b,k).(b+1)/2 < p(b,k+1), 
p (c,k) : 2p(c,2k+1)/C = C/2 : p(c,k+1) where p(c,k) < 
p(c,k).2c/ (c+ 1) < p(c,k). (c+ 1 )/2 < p(c,k+ 1), 

for all acute-angled scalene integer-side triangles (a,b,c), a > b 
> c > O. 

By the definitions of harmonic, geometric and arithmetical 
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means [7:87], 
p (a,k).2a/(a+1) : p(a,k+1/2) = p(a,k+l/2) : p(a,k).(a+1)/2 
where p(a,k).2a/(a+1) < p(a,k+1/2) < p(a,k).(a+l)/2, 
p(b,k).2b/(b+l) : p(b,k+l/2) = p(b,k+l/2) : p(b,k).(b+l)/2 
where p(b,k).2b/(b+l) < p(b,k+1/2) < p(b,k).(b+l)/2, 
p (e,k).2e/(e+l) : p(e,k+l/2) = p(c,k+1/2) : p(c,k).(c+1)/2 
where p(c,k).2e/(c+l) < p(c,k+1/2) < p(c,k).(c+l)/2, 

for aIl aeute-angled scalene integer-side triangles (a,b,e), a > b 
> c > o. 

Taking now new harmonie and arithmetical means (of second 
degree) of the previous harmonie and arithmetical means of 
p(a,k+l), p(a,k); p(b,k+1), p(b,k); p(c,k+l), p(c,k), and sa on, ad 
infinitum, one will ob tain ever better approximations from below 
and from above, ta the geometric means p(a,k+l/2), p(b,k+l/2), 
p(c,k+1/2). As the geometrie means are, by counter-assumption, 
sides of a right-angled triangle, aU harmonie means of the same 
degree must be sides of acute-angled triangles and an arithmet
ical means of the same degree sides of obtuse-angled triangles. 

In arder ta establish a contradiction it is sufficient ta prove 
that any of the triangles with harmonic means as aides is either 
right-angled or obtuse-angled, or any of the triangles with 
arithmetical means as sides is either right-angled or aeute
angled. 

As Prop. 4 already proves FLT for a11 even exponents, it 
suffices in facl to prove that any of the triangles with harmonic 
means (of the same degree N) as sides, say (p(a,o"'î), p(b,0"'2), 
p(c,0"'3» where 1 ~ k < o"'î < oA2 < 0"'3 < k+l/2, is either 
right-angled or obtuse-angled. By Defs. 2-3 that is the case 
when p(a,20"'1) ~ p(b,20"'2) + p(c,20"'3). We shall claim that in our 
praof reconstruction of Prop. 5 (below). Note that the claim 
implies p(a,20"'1) > p(b,20Al) + p(c,20"'1), because p(b,u""2) > 
p(b,o"'l) and p(c,0"'3) > p(c,o"'l). This additional implication is 
vital. 

Given a,b,c and the degree N, the exponents u .... î, u ..... 2, 0 ..... 3 are 
computable, of course, but actually the harmonic means of degree 
N will suffice. For N = 1,2,3 the harmonic means between p(r,k) 
and p(r,k+1) are (where H = r+1 and G = p(H,2)+4r): 

2p(r,k+1)/H < 4p(r,k+l)H/G < 8p(r,k+l)HG/(p(G,2)+rp(4H,2» < 
••• < m"'(N,harm)(p(r,k+l),p(r,k» < m .... geom(p(r,k+l),p(r,k»; r > 1, 
k ~ 1 are integers, N > 3 indicates the degree of the harmonic 
mean, and increases ad infinitum (notation is for brevity). 

Perhaps we must mention in passing rusa the Golden Section. 
Note that if we rewrite p(a,2k+1) = p(b,2k+1) + p(c,2k+1) as 
p(a,2k+1)/p(b,2k+1) - p(c,2k+1)/p(b,2k+l) = 1, three mutually 
exclusive, necessary conditions for.a non-trivial solution are 



CHEZ FERMAT A.D. 1637 145 

obtained. Either p(a,2k+l) : p(b,2k+1) = Il = ({5+1)/2 = p(b,2k+l) : 
p(c,2k+l) or p(a,2k+1) : p(b,2k+1) > Il > p(b,2k+1) : p(c,2k+1) or 
p(a,2k+l) : p(b,2k+1) < Il < p(b,2k+1) : p(c,2k+1). The first case 
(sectio aurea) will not do: because a, b are relatively prime 
integers and the (2k+1)th powers in G.P., (c) is not an integer, 
by Elementa VII.27 and IX.16. 

In the second case, a:b > b:c and, since a > b > c > 0, (a-b) > 
(b-c). Thus (a-b) 1- (b-c), which is part of Goldziher's result 
[4]. In the third case, however, aIl the three alternatives in the 
relation of (a-b) to (b-c) are possible. 

The first case (sectio aurea) being excluded, it is clear that 
in the second and third case p(a,2k+1), p(b,2k+1), p(c,2k+1) must 
be three consecutive terms of the Fibonacci series (which Fermat 
knew), Lucas series, or of sorne other similar series with other 
initial numbers. Hence FLT now reads: there are no three con
secutive terms an (2k+1)th powers, in any such series. What 
complicates the matter is the start. For in the third case even 
the first three terms of an appropriate series will do. 

Now, the series similar to the Fibonacci series have been 
studied in particular by D.H. Lehmer [cf. 6:148], and there are 
studies on the Fibonacci numbers that are powers, but it is not 
fair ta assume that Fermat would have anticipated them. [Yet he 
must have studied sectio aures like almost all of his contempora
ries and predecessors.] 

In search for the hidden lemmas 

What could a musician like Lully do without an enchanting 
theme? What about a master navigator like Pytheas on unknown 
seas without his teacher's device for finding out his bearings 
[cf. Il]? For a mathematician, lemmas have the same vital impor
tance. Blessed are those whose proofs succeed on the wings of 
"hidden lemmas", for the y do not know what they are doing. But 
there lies a curse on the others: the "hidden lemmas" must be 
found and, with luck, refined. 

As to the refinenemt of "hidden lemmas", Fermat may have 
learned it from Diophantus' use of regula falsi (e.g. at Arithme
tica IV.15,37). Itcannot be doubted, either, that Fermat was in 
constant search for "hidden lemmas". For he had tried to restore 
Apollonius' lost Plane loci on the basis of Pappus' account 
[7,II:185], and commented on statements probably from 
Diaphantus' lost Porisms (e.g. at Arithmetica 
III.19;IV.29,30;V.9,11,14 ). 

As for Prop. 5, what is needed is a lemma that will set 
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bounds to the ratio (p(a,k+ 1/2)-p(a,o"1» : [(p(b,k+ 1/2)-p(b,o .... 2» 
+ (p(c,k+l/2)-p(c,o"3»], for computations show that it increases 
when N increases (see Porism 2 below). 

It turns out, however, that a very modest lemma will suffice 
here. 

LemmB 8. If p(a,2k+l) = p(b,2k+l) + p(c,2k+l) has an integer 
solution a > b > c > 0, k ~ 1, then 1 > p(a,(2k+l)/2) : 
p(b,(2k+1)/2) + p(c,(2k+1)/2) > 1 : .[2. 

As for proof, if p(a,2k+l) = p(b,2k+1) + p(c,2k+1), then 
p(a,(2k+1)/2) = r(p(b,2k+1) + p(c,2k+1),2). The upper and lower 
bounds are proven indirectly. If r(p(b,2k+1) + p(c,2k+1),2) ~ 

p(b,(2k+ 1)/2) + p(c,(2k+ 1 )/2), then p(b,(2k+ 1)/2).p(c,(2k+ 1 )/2) or 
the geometric mean of p(b,2k+l), c(p,2k+1) ~ 0; a contradiction 
because a > b > c > O. If p(b,(2k+1)/2) + p(c,(2k+1)/2) ~ 
.[2.r(p(b,2k+1) + p(c,2k+1),2), then p(b,(2k+l)/2).p(c,(2k+1)/2) : 
(1/2).(p(b,2k+1)+p(c,2k+1» or the ratio of the geometric mean of 
p(b,2k+l), p(c,2k+1) to their arithmetical mean ~ 1; a contradic
tion because the geometric me an is lesser than the arithmetical 
mean. QED 

Thus the claim is proven. We can restrict ourselves to 
triangles w here i t is. 

Now, LemmB 8 actually reduces the number of such acute
angled (2k)-potent scalene triangles with integer sides, on which 
FLT could fail. In contradistinction to the previous Lemmas 1-6, 
however, LemmB 8 focuses directly on the (2k+1)th powers of 
a,b,c. Obviously LemmB 8 is an implication of a more general 
proposition. Its full potential can best be exploited by conduct
ing the proof of Prap. 5 in such a manner that LemmB 8 serves 
as a necessary and sufficient condition. 

Where did the great mathematicians find their lemmas, then? 
There is one general source, the collections of propositions 
called porisms by the ancients. In Fermat's case, we already 
noted his likely contact with Diophantus' Porisms, but it is even 
more intimate with Euclid's. To quote Heath [7,1:435], "The great 
Fermat (1601-65) gave his idea of a 'porism', illustrélting it by 
five examples which are very interesting in themselves; but he 
did not succeed in connecting them with the description of 
Euclid's Porisms by Pappus, and, though he expressed a hope of 
being able w produce a complete restoration of the latter, his 
hope was flot realized." 

Ar:? Euclid 's Porisms remain 10st. even today, we must turn to 
the commenta tors, Pappus and Proclus. From Pappus Collection 
we gather that the enunciations of porisms are contracted and in 
fact comprehend many propositions in one enunciation [VII:648-
60]. This is corroborated by his examples [7,1:432-433]. Pappus 
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and Proclus (Commentary an Euclid 1: ZlZ,14;301,ZZ) alsa agree on 
the intermediate status of porisms between theorems and prob
lems. Porisms, therefore, are useful in two directions" 

In accordance with these views we conjecture that Fermat 
made use of three porisms which turn out ta help prove Prap. 5. 

Parism 1. 1 > r(b+c,Z) : (r(b,Z)+r(c,Z» > 1 : ..[Z; this implies 
Lemma 8. 

For the other two porisms, we must agree on the common 
notation. 
Let K"'l = r(p(a,Zk+1),Z) - m .... (N,harm)(p(a,k+1),p(a,k» and 
m":(N,harm)(p(a,k+1),p(a,k» = p(a,o .... l) 
Let E .... Z = r(p(b,Zk+l),Z) - m .... (N,harm)(p(b,k+1),p(b,k» and 
m .... (N,harm)(p(b,k+1),p(b,k» = p(b,o"Z) 
Let E .... 3 = r(p(c,Zk+l),Z) - m"'(N,harm)(p(c,k+l),p(c,k» and 
m"(N,harm)(p(c,k+l),p(c,k») = p(c,0"3) 

Porism 2. If a > b > c > 0, then E .... l > E .... Z > E .... 3 > O. 
The order of the exponents of a, b, c depends on the coefficients 
of p(a,k), p(b,k), p(c,k) in the harmonic means of a finite degree 
N, for which it holds 
Za/(a+1) : a < Zb/(b+l) : b < Zc/(c+1) : c, 4(a+1)a/(p(a+1,Z)+4a) : a 
< 4(b+l}b/(p(b+1,Z)+4b) : b < 4(c+1)c/(p(c+l,Z)+4c) : c, etc. 
Thus k < 0"1 < o .... Z < 0"'3 < k + 1/2. Because in the geometric 
means the exponent is the same (k + 1/2) and a > b > c > 0, the 
differences E .... i > E"'Z ) E"'3. Finally, because even the harmonie 
mean of a finite degree N, of p(c,k+1), p(c,k), is smaller than the 
geometric mean of p(c,k+1), p(c,k), E"'3 > 0 when c > O. Therefore 
E"'l > E"Z > E"3 > O. QED 

It may be noted that Parism 2 and Lemma 8 (or Parism 1) 
together set bounds to the ratio E .... 1 : (E' .... 2+E"3) which increases 
when the degree N does. 

Porism 3. p(p(b,(2k+1)/2) - (E .... 2+E"3)/2,2) + p(p(c,(2k+l)/2) 
- (E"'2+E"'3)/2,2) > p(p(b,(2k+ 1)/2) - E"'2,2) + p(p(c,(2k+ 1 )/2) 
- E"'3,2). 

Using the same notation as in Parism 2, the proof of Porism 3 
becomes straightforward computation. Raising the bracketed 
terms to square and subtracting, we obtain 2(E"'2 
E .... 3)(p(b,(2k+1}/2) - p(c,(2k+1)/2» > p(E"2 - E"3,2). Dividing 
both sides by (E"2 - EA3) and recalling how E"'2, E"'3 were 
characterized, we finally ob tain p(b,(2k+1)/2) - p(c,(2k+1)/2) > 
mA (N,harm) (p(c,k+ 1 ),p(c,k» - m" (N,harm) (p(b,k+ 1 ),p(b,k», which 
holds good because the left hand side is greater than zero and 
the right hand side less than zero when b > c > O. QED. This 
result illustrates the usefulness of porisms in problems. 

Note that Parism 3 could have been enunciated in a different 
way alsa, e.g. as Parism 3* : the sum of the left-hand side of the 
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two squares is the greatest one because the arithmetical mean of 
E' .... 2 and E"'3 has been subtracted. In that case the problem 
becomes one of determining the maximum sum, where Fermat 
could have used his method of maxima and minima with the 
characteristic auxiliary variable E. 

It is worth while to conclude this section on porisms with a 
philosophieal note. Every mathematician interested in FLT must 
have faced the fact that FLT is an extremely isolated proposition. 
Now, a proof is ordinarily so conducted - no matter which 
method is employed - that either an absurdity, contradiction or 
compatibility is established with respect to previously proved 
propositions or accepted axioms, although even the accepted 
rules of inference might do. As a rule, the ab sur dit y, contradic
tion or compatibility can ultimately be referred to an axiome The 
porisms, despite their great generality, as in Porism 1, are not 
axioms, however. When a contradiction (or absurdity, or compati
bility) is established with respect to a porism, the proof might 
be considered less than perfect by our standards. Fermat must 
have thought differently, following Pappus who had stated about 
Euclid's Porisms that "the se porisms embody a theory subtle, 
natural, necessary, and of considerable generality, which is 
fascinating to those who can see and produce results" [7,1:431, 
in a sentence bracketed by Hultsch who edited the Collection, 
but in full agreement with Pappus' words and tenor in the same 
context]. At any event, Fermat's use of Lemma 8 (which rests on 
Porism 1) and Porisms 2-3, should be considered as an attempt tD 
break the isolation of FLT. In this respect it is to be compared 
with Yoichi Miyaoka's reliance on the principles of avantgarde 
theoretical physics, in his attempt at a proof of FLT (1988). 

As to Porism 2, it is far less precisely worded than the 
modern tas te demands. That is due to the historical restriction: 
Fermat did not use the Umit concept, contrary ta what earlier 
interpretations often claim (see below). Finally, in Porism 3, 
Fermat may well have tried the geometric mean instead of the 
arithmetical mean. But that leads to a blind alley. 

Prao! Reconstruction 

In our proof reconstruction of Prop. 5 by Fermat's methods we 
employ redu~tio ad absurdum and attempt to prove that if (a,b,c) 
is a (2k)-potent acute-angled scalene triangle with integer sides 
su ch that a > b > c > 0 are relatively prime, p(a,k), p(b,k), p(c,k) 
are sides of an acute-angled triangle, p(a,k+1), p(b,k+1), p(c,k+l) 
are sides of an obtuse-angled triangle, their geometric means 
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p(a,k+l/2), p(b,k+l/2), p(e,k+l/2) are sides of a right-angled 
triangle and 2k+ 1 ~ 3 is an integer, then also, for sorne (high) 
finite N, their harmonie means of degree N are sides of a 
right-angled or of an obtuse-angled triangle. 

This is equivalent, by Defs. 2-3, ta proving that 
(1) p(m"(N,harm)(p(a,k+1),p(a,k»,2) ~ p(m"'(N,harm) 

(p(b,k+ 1) ,p(b,k» ,2) + p(m .... (N,harm) (p(e,k+ 1) ,p(e,k) ),2), 
which is absurd because the geometric and the harmonie means 
of degree N of the same numbers, cannot both be sides of a 
right-angled triangle, nor the geometrie means sides of a right
angled triangle and the harmonie means of degree N of the sarne 
numbers sides of an obtuse-angled triangle. For if the geometric 
means are sides of a right-angled triangle, as the y are in case 
FLT fails for odd exponents, then the harmonic means of any 
degree of the same numbers must be sides of an acute-angled 
triangle; and if not, an absurdity follows. 

Praof. 
(2) If the geometrie means are sides of a right-angled 

triangle, then p(a,2k+l) = p(b,2k+1) + p(e,2k+l) and conversely, 
and p(a,(2k+l)j2) = r(p(b,2k+l) + p(e,2k+l),2). 

(3) In the notation of Porisms 2-3, by (2), the praof of (1) is 
equivalent to proving p(r(p(b,2k+l) + p(e,2k+l),2) - E"I,2) ~ 

p(p(b,( 2k+1)/2) - E"2,2) + p(p(c,(2k+l)/2) - E .... 3,2). 
(4) By Porism 3, (3) holds if the following does p(r(p(b,2k+l) 

+ p(e,2k+1),2) - E""1,2) ~ p(p(b,(2k+l)/2) - (E"2+E"'3)/2,2) + 
p(p(c,(2k+1)/2) - (E .... 2+E ... 3)/2,2). 

(5) We introduce an auxiliary variable l > E > 0 (whieh May 
be imagined very small, in accordance with a high value for N) 
such that for two positive numbers r,s it holds that rE = E"l and 
sE = (E .... 2+E ... 3). We next determine the bounds ta the ratio (r:s) 
by a method of Fermat. 

(6) Substituting rE for E .... I and sE for E .... 2+E .... 3, by (5), we 
can rewrite (4): p(r(p(b,2k+l) + p(c,2k+I),2) - r E,2) ~ 

p(p(b,( 2k+ 1 )/2) - sEj2,2) + p(p(c, (2k+ 1)/2) - sE/2,2). 
(7) Raising to square and computing we obtain from (6) the 

following: s (p(b,(2k+l)/2) + p(c,(2k+I)/2» + rZE ~ sZE/2 + 
2r.r(p( b,2k+l) + p(c,2k+l),2). 

(8) Let E = O. This operation is charaeteristic to Fermat; E is 
not let "approach to zero" as he did not operate with the 
concept of the limite The same result is obtained if, instead of 
(8), the following steps are taken. Both sides of (7) are divided 
by the coefficient of E. The pr(X)f then bifurcates as either 2rz < 
~ or 2rz > ~; if 2rz = ~, a short-cut leads ta (9). Finally, in 
both branches, let E = 0, and (9) is obtained. 

(9) By (8) from (7), s : 2r ~ r(p(b,2k+l) + p(c,2k+I),2) : 
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p(b,(2k+l)/2) + p(c,(2k+1)/2). 
(10) Now (4) and (3), and hence (1), will he proven by LemmB 

8 iff 1 > s : 2r ~ r(p(b,2k+1) + p(c,2k+l),2) : (p(b,(2k+1)/2) + 
p(c,(2k+1)/2» > 1 : ..[2, that is iff 1 : ..[2 > (p(b,(2k+1)/2) + 
p(c,(2k+1)/2» : 2r(p(b,2k+1) + p(c,2k+1),2) ~ r : s > 1 : 2. 

We now study E"'I, E"'2, E"'3 within the bounds 1, 1:2 in 
preparation to proof. 

(11) Retranslating (10) inta the notation of Porisms 2-3 by 
(5), we obtain the bounds 1 : ..[2 > E"'l : (E"2 + E"3) > 1 : 2 from 
(10). Thus 2E .... l > E .... 2 + E .... 3 > ..[2E .... 1 and B fortiori E"2 + E"3 > 
E"l. By Porism 2, E"l > E .... 2 > K"3; and E"3 > 0 because the 
harmonie mean of any finite degree N, is smaIler than the 
geometric mean of p(c,k+l), p(c,k) when c > O. Therefore E .... 1, 
E"2, E .... 3 are sides of a scalene triangle by Elem. 1.20; (cf. the 
praof of Prop. 1). 

(12) When 1 : ..[2 > E .... l : (E .... 2 + E .... 3) > 1 : 2, the upper bound 
indicates that the triangle (E"l, E .... 2, E"3) is acute-angled, for 
p(E"2 + E .... 3,2) > 2p(E .... l,2). Most (but not aU) scalene, rational
side, acute-angled triangles satisfy a similar condition. 

(13) Now, (s:2r) and (r:s) are interchangeable in steps (5-10) 
of the proof-scheme. If, mutatis mutandis, 1 > r:s > 1:..[2 > s:2r > 
1:2 in (10), then, retranslating inta the notation of Porisms 2-3 
by (5), 1 > E"1:(E .... 2 + E"3) > 1:,.f2 > (E"2 + E"3):2E"1 > 1:2. Renee 
now 2p(E .... 1,2) > p(E"2 + E .... 3,2). The rest of scalene, rational-side, 
acute-angled triangles, which did not satisfy the condition of 
(12), satisfy this type of condition. For if 2p(E .... 1,2) = p(E"2 + 
E .... 3,2), aIl sides cannot be rational. (Note that Euclid takes a 
wider view of 'rational' [7 ,I:403]). 

(14) It is worthwhile ta express the findings of (12) and (13) 
in an analogical way. For an scalene, rational-side, acute-angled 
triangles either 1 > (E"2+E .... 3):2E .... 1 > 1:..[2 > E .... l:(E"2+E"3) > 1:2 or 
1 > (E .... 2+E .... 3):..[2E"1 > 1:..[2 > E .... 1:..[2 (E .... 2+E"3) > 1:2. A fortiori, 
these two sets of bounds cover all scalene, integer-side, acute
angled triangles with the same ratios of their sides considered in 
the same manner as above. 

(15) On the bounds, contrBdictiones in Bdjecto spring up. An 
example for Fermat could have been Erycinus' paradoxes in 
Pappus' Collection III, Third section. For if E .... l:(E"2+E"'3) = 1:..[2, 
then E .... 2, E"3/ could be the sides and E"l the diagonal of a 
square; if it is = 1:2, then EAl, E .... 2, E"3 could be sides of an 
equilateral triangle; and if it is = 1, then EA1, E"2, E"3 could be 
sides of an obtuse-angled triangle in the extreme case that the 
apex angle is 180·. It is reasonable to think that Fermat wanted 
to avoid such paradoxes, just as modern mathematicians do. 

(16) We set first aE = rE, (b+c)E = sE in (5), and using the 
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proof scheme (5)-(10) thus prove 1 > (b+c):2a ~ r(p(b,2k+1) + 
p(c,2k+1),2):(p(b,(2k+1)/2) + p(c,(2k+1)/2» > 1:{2 at step (10) by 
Lemma 8. Here a:(b+c) ~ E~1:(E~2+EA3) and {2a < b+c. 

(17) Second, we set aE = rE, {2(b+c)E = sE in (5), and using 
the proof scheme (5)-(10) thus prove 1 > (b+c):{2a ~ r(p(b,2k+1) 
+ p(c,2k+ 1 ),2):(p(b,(2k+ 1 )/2) + p(c,(2k+ 1 )/2» > 1:{2 at step (10) 
by LemmB 8. Here a:{2(b+c) ~ K'''1:{2(E~2+E~3) and {2a > b+c. 

(18) Thus the proofs (16), (17) cover aU scalene, integer
side, acute-angled (2k)-potent triangles (a,b,c) divisible in two 
subsets as in (14). 

(19) Hence (1) is proven, an absurdity established, and Prap. 
5, that is to say, FLT for odd exponents 2k+1 ~ 3, proven 'truly 
remarkably'. QED 

(20) Finally, we explicate the core of (16), (17). Consider first 
1 > (b+c):2a ~ p(a,(2k+ 1)/2):(p(b,(2k+ 1)/2) + p(c,(2k+ 1)/2» > 1:{2. 
Recalling our heuristic analysis and the application of Elem. 1.21 
we put the right-angled triangle with the geometric means as its 
sides on the same scale with the triangle (a,b,c), with (a) as the 
common base (cf. Fig.l). Thus 1 > (b+c):2a ~ a:(6+'d > 1:{2, where 
a = r(p(h,2k+1)/p(a,2k-1),2) and,.; = r(p(c,2k+1)/p(a,2k-1),2). 
Here 6 and ,.; are (if FLT fails for odd exponents) sides of a 
right-angled triangle with the base (a); the right apex angle is 
contained by the semicircle with the radius (a/2). The maximum 
value for the sides of such a right-angled triangle is {2a = 
2r(p(a/2,2)+p(a/2,2) ,2) > 13+,.;. 

This maximum value can be obtained in many ways (e.g. the 
apex of the right-angled triangle, say A*, is the only common 
point of the semicircle BA*C and an ellipse of which B and C are 
the foei). It was known to the ancient geometers, tao. But, as it 
happens, it is also an immediate consequence of a result of 
Fermat, proved by his method of maxima and minima using the 
auxiliary variable E (Oeuvres I:133-4,147-51;III:121-2; cf. Sup
plement:120-125 and Boyer 1949:155-6). 

The core of (16) can be expressed as (b+c) (6+,.;) ~ 2a2 or 
r«b+c) (13+,.;),2) ~ {2a. On the other hand, the relationship 2a > 
b+c > "'2a > 6+,.; holds good for the triangle (a,b,e) in (16). Thus 
the core of (16) can be expressed in words in this way : {2a, the 
maximum value for 6+,.;, is equal or smaUer than the geometrie 
mean of (b+c) and (6+,.;). Because the geometrie mean is greater 
than the harmonie mean and smaUer th an the arithmetical mean, 
il can be expanded into this: the maximum value for 6+,.; is 
smaller than the arithmetical mean, smaUer than or equal with 
the geometric mean, and greater than or equal with the harmonic 
mean, of (h+c) and (6+,.;). 

The core of (17) can he explieated in a similar manner. The 
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core of (17) can be expressed as (b+c) (J3+-r) ~ ..[2a2 or 
r( (b+c) (13+,;),2) ~ r( ({2a)a,2). On the other hand, the relationship 
2a > {2a > b+c > J3+,; or {2a > r( ({2a)a,2) > r(a(b+c),2) > 
r(a(B+,;),2) holds good for the triangle (a,b,c) in (17). Again 
expansion and verbal summary can be given. We conjecture that 
such expansions and geometric considerations were the genesis 
of FLT. 

Thus triangles, and in particular acute-angled triangles with 
scalene integer sides, pervade our reconstruction of Fermat's 
proof from Frap. 1 ta Frap. 5. Defs. 1-4 and Lemmas 1-8 adum
brate, in our opinion, his bordera ta this newly discovered 
kingdom in a valley between barren peaks. 

Fermat's auxiliary variable E first appears in his method for 
determining maximum and minimum values (1638), but in a letter 
to Roberval (1636) Fermat mentions that already in about 1629 he 
was in possession of the method. It is quite possible, therefore, 
that Fermat made use of the same technique of an auxiliary 
variable E in 1637 in the praof of FLT. Fermat probably learned 
it from the ancient geometers [cf.12:120-122] or from Pappus (see 
the analysis of Prop. 12 at Collection, Book IV). Pappus' influence 
on the method of maxima and minima is clear, however. 

Pappus had spoken of a "minima et singularis proportio" 
which led Fermat ta consider the fact that in a problem that in 
general has two solutions, the minimum and maximum value gives 
only one solution (as Fermat explained in a letter 1643; cf. P.G. 
Giovannozzi, "Pierre Fermat. Una lettera inedita", Archivo di 
Storia della Scienzia, 1:137-140 and Boyer 1949:155-6). The argu
ment in Fermat's first application of this method (1638) runs like 
this: Given a line segment (a), mark off the distance (x) from one 
end. The area on the segments is A = x(a-x). If one marks off the 
distance (x+E), however, the area is A = (x+E)(a-x-E). For the 
maximum area the two values will be the same, as Pappus had 
noted, and the points marking off the distances (x) and (x+E) 
will coincide. Now, setting the two values of A equal and letting 
E = 0, the result is x = a/2. This is the result mentioned above at 
step (20); we consider it a piece of circumstantial historical 
evidence for our praof reconstruction. 

On the other hand, also Pappus' account of the ancient 
heuristic method of analysis and synthesis [cf.12] lends sorne 
support ta our reconstruction. Note, in particular, his general 
description: "Now analysis is the way from the zetoumenon (what 
is sought) - as if it were admitted - through its akoloutha 
(concomitants) in arder ta something admitted in synthesis. For 
in analysis we suppose the zetoumenon ta be already done, and 
we inquire from what it results, and again what is the anteced-
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ent of the latter, until we on our backward way light upon 
something already known and being first in arder. And we call 
Bueh a method analysis, as being a solution backwards" (Collec
tion VII, The method of analysis, 8; tr. Jaakko Hintikka & Unto 
Remes, based on 1 vor Thomas and Thoml:is Heath; The metllOd of 
analysis. Its geometrical origin and its general significance, 1974, 
Dordrecht, Boston; cf. [12:116]). "Something already known and 
being first in order" is a very appropriate notion when the 
triangles enter the praof again in steps (11) to (13). Assuming 
that the praof was cast in the mould of a foregoing heuristic 
analysis, (11) to (13) may weIl remind us of the turning point of 
analysis, after which the synthesis will Iollow. And when the 
initial triangles reappear into the praof in steps (16) and (17), 
this may well account for Fermat's own characterization of the 
surprise element. 

But is (1 )-(20) reaIly a praof and not only heuristics ? One 
reason for Fermat to drop his note on a "truly remarkable 
praof", was probably Descartes' unduly bitter criticism against 
the method of maxima and minima. Moreover, Fermat also believed 
that his method of tangents was an application of his method for 
maxima, but facing the criticism, was unable to specify which 
quantity he was maximizing (cf. Boyer 1949:158). That type of 
criticism can be directed against the reconstructed praof also. 
After aU, the maxima of (13+,;) needed, play only a minor role. 
Perhaps it would be better to speak about an independent 
"E-method" or of a praof scheme in steps (5)-(10), as we have 
done. 

Descartes' criticism and Fermat's hallmark: solution of geo
metrical problems rather than generalization of methods, must he 
weighed against each other. We are inclined to answer our main 
question in the affirmative. With respect ta the standards of his 
time, Fermat was justified in claiming that he had invented "a 
truly remarkahle proof" to FLT. 

The steps (11)-(13) and (16), (17) mark a pregnant moment in 
the history of mathematics. It may strike one that the auxiliary 
variable E was brought in by a postulate, but that was(and still 
is) the style of the Old Masters. It may intrigue one to note that 
the explication (20) sounds very prosaic in comparison with the 
formulation of FLT, but even if the problem was a fruit of a 
skilful device, it advanced the art. Sometimes the man finds his 
problem, sometimes the problem its man. But in the last analysis, 
what matters is the problem. And Fermat did discover a IDOSt 
unexpected symmetry between the IDicrocosm and themacrocosID 
of triangles, between the triangles (E .... l,E .... 2,E .... 3) and (a,b,c). His 
proof scheme was his microscope and the theory of means his 
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telescope. 
But it is not Fermat's fault that the course in the history of 

mathematics differed from Fermat's pivotaI idea, which was 
founded on discrete entities at aU levels of mathematical exist
ence. Nor can he be blamed for the superficial applications of his 
Principle of the Least Time, the physical analogue of FLT. 

Ek Pan ton Hen Kai Ex Henos Pan ta 

Our reconstruction of Fermat's reasoning follows a via negativa, 
befitting a Requiem ta his Greek predecessors. First, by Fermat's 
extant praof using his Method of Infinite Descent (the principle 
of well-ordering of natural numbers), if FLT fails, then the 
exponent n t 4. Second, by Prop. 4, n is not an even integer. 
Third, by Prop. 5 using reductio ad absurdum, n is not an odd 
integer. A truly constructivist praof might be required to yield 
also the (non-integer) value for n, depending on the perimeter 
2h = a+b+c and on how far apart a,b,c are from one another in 
each case. Fermat, if anybody, must have required that type of 
perfection in a proof, "an early Bourbakian" as he is. 

The fact that a sentence (e.g. FLT put into a universal garb 
[15:216]) is a theorem depends essentially on how rich is the 
given collection ofaxioms. Similarly, one's method of establishing 
a contradiction depends on it. Truth and Contradiction are Twin 
Daughters of Time. 

It seems that Fermat had not much of a choice. We think he 
considered first (c. 1637-1640) that his reductio ad absurdum is 
enough, and did not distinguish the Janus faces of an actual 
construction from one another. But around 1640 he did it: in a 
letter ta Mersenne (where the problem was proposed to Frénicle 
de Bessy), and in another in 1657 to Digby (where it was 
proposed ta Wallis and Brouncker), Fermat no more mentions his 
"remarkable praof" [15:2]. We conjecture that by then he fully 
realized the utter isolation of the theorem p(a,2k+1) '1 p(b,2k+1 
+ p(c,2k+1). In fact he had proven a useful theorem [6:Theorem 
366]. But he probably had not determined the (non-integer) 
value for n in its various cases in p(a,n) = p(b,n) + p(c,n), as a 
true constructivist might want to. 

Nevertheless, Fermat had discovered an interesting line of 
attack that made use of the ancient theory of means (Nicomachus 
and Pappus have preserved altogether eleven different means, 
cf. [7:87]). And he had realized the possibilities embedded in 
Erycinus's Paradoxes about Euclid's Elem. 1.21, as weIl as the 
effectivity of Heron's approach in his Me trics , and Pappus's 
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accoun t of heuristics in his Collection. Ail this was possible for 
him, because he had a direct access to Greek sources thanks to 
his interest in Greek philology. Fermat's Principle of the Least 
Time in optics, again, suggests another main trait in his intellect: 
Gallic sagacity. And it connects FLT with physics. 

As for the constructivist praof of Prop. 5, we presume that 
Fermat tried to determine the value for a non-integer n and 
pursued perhaps the two other strategies of praof outlined 
above, until the end .. 

But even if he never succeeded in these self-irnposed tasks 
(for he left no vestiges of his eventual labours), it is worthwhile 
to study his heuristics today. As Arpad Szab6 wisely says about 
the general problern: "lch bin überhaupt der Ansicht, dass nicht 
nul' die mathernatische Heuristik in den Dienst der historischen 
Forschung gestelIt werden kann, sondern auch urngekehrt die 
historische Forschung die keimende Wissenschaft der Heuristik 
fordern solI" [16:482, N.19]. 

As for wider historical perspectives, Ferrnat's problem is 
intimately connected with two of Hilbert's Problerns [8], viz. IV 
and X. In spite of Hamel's positive solution to the former already 
in 1901 and Ju.V. Matijasevic's and G.V. Cudnovskij's negative 
solution to the latter in 1970 [cf. 13], it is interesting to ponder 
about sorne historical contrafactuals, or rather "counter-eventu
aIs". What would be missing in modern mathernatics without 
Ferrnat's problern, for instance? What would have ensued from an 
early solution to it? What cou Id follow now, and in the future? 

These are, of course, very big questions. But at least sorne 
answers are possible. Thus it is worthwhile to repeat the early 
optical experiments within the context of a discrete point geome
try (a fragment of the Euclidean geometry) where the Principle 
of the Least Time applies. It is generated by the Pythagorean 
triangular nurnbers [7:76-7] illustrated (in the two-dimensional 
case) by Fig. 3. The results may concern modern science, too. 

Another case of interest is Hamilton's quaternions v. Fermat's 
FLT. Hamilton's quaternions were invented after frustrating 
efforts ta find three-dimensional numbers that would possess the 
normal properties of real and complex numbers. It turned out 
that "the principle of permanence" could not be satisfied which 
requires that a nurnber field should fulfill the following proper
ties: (1) sequence of natural numbers can be identified, (2) 
criteria of rank can be established and (3) a scheme of addition 
and multiplication can be devised that will have the commutative, 
associative, and distributive properties of the natural operations 
(cf. Tobias Dantzig 1954(4):92-93). 

Hamilton had to sacrifice the commutative law of multiplica-
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tian and four dimensions were needed for the new numbers. As 
Kline puts it, geometric hindsight can show us that the rotation 
and the stretching or contraction of a given vector in physical 
space requires four parameters; three angles and a stretching 
factor. More formally, Frobenius has proved thst "the only linear 
associative algebras with real coefficients (of the primary units), 
with a finite number of primary units, a unit element for multi
plication, and obeying the product law are those of the resl 
numbers, lhe complex numbers and real quaternions" (cf. Morris 
Kline 1972:779,793). Nevertheless, triples' of integers are flexible 
in other respects. Although three-dimensional vectors are used 
in the vector analysis of modern physics or in mathematics as a 
special case of a n-dimensional linear algebra, it seems that the 
study of triangular numbers as separate entities has been 
sidestepped because of the historical process that led to the 
physics-orienled quaternions. Second, interpreted as integer
side triangles, they constituted Fermat's ontology of mathemat
ics. Their metamorphosis into furca crosses we have barely 
alluded to (cf. Fig.3). 

There is no need to dwell on the ancestry of mathematical 
atomism (at times distinguished from, at times merging together 
with, physical atomism). It may be recalled, however, that a very 
eloquent prologue was given in Zeno's "Stadion" and "Flying 
Arrow". In the subsequent dialogue, atoms or indivisibles were 
made use of in many ways by men like Democritus, Plato, 
Aristotle, Archimedes, Heron, Oresme, Nicholas of Cusa, Galileo, 
Kepler, Pascal, Huygens, Cavalieri, Torricelli and Roberval be
sides Fermat. With sorne notable exceptions, like Kronecker, 
atomism is rejected in modern analysis; its kingdom is number 
theory. 

It is worthwhile, however, to get rid of a misunderstanding 
as to Fermat's use of the auxiliary variable E. In his method of 
the maxima and minima, Fermat's procedure is aImost precisely 
the same now employed in the differential calculus, except that 
dx is substituted for E. No wonder, therefore, that Fermat's 
argument for his method is at times interpreted in terms of the 
limit concept (sa that E becomes a variable quantity approaching 
zero; cf. for instance Duhamel's (1864) "Mémoire sur la méthode 
des maxima et minima de Fermat, et sur les méthodes des tan
gentes de Fermat et Descartes"). A much more reasonable inter
pretation is,. however, that Fermat let E vanish in the sense of 
actually being zero (cf. Tannery 1902:344; Wallner 1904:122-123; 
Boyer 1949:154 ff.). We have adopted this interpretation 
throughout. For firstly, in so doing we need not ascribe to 
Fermat advanced notions not corroborated by his own words. 
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And secondly, this interpretation is in full agreement with 
Fermat's predecessors. To put it shortly: Fermat remained 
faithful to Greek Antiquity and refused (Boyer seems ta contend 
that he was unable) to use the limit concept of continuous 
variables. Fermat also tried to avoid the concept of actual 
infinity, and used equalities, inequalities and pseudo-equalities 
(his oVIn term is adaequBlitas; see, e.g., Oeuvres 1:133-79) in
stead. 

Aware as we are of the endless paradoxes connected with 
infinite sets, it is good ta consider the wisdom of Fermat's 
approach. But things were in the move: already 1656 in Wallis' 
ArithmeticB Infinitorum actual infinity enters heuristics. 

As to the present state of the art, we may recall that Paul 
Cohen's solutions (1963 and 1966) are not the end of Cantor's 
"Problem von der Machtigkeit des Kontinuums (1878)" which 
Hilbert proposed as his first and foremost problem in 1900 (for 
the references, see [13:143-4]). The problem arises when the 
Continuum Hypothesis is ta be proven consistent with, or inde
pendent of, the rest of the axiom systems with or without the 
Axiom of Choice in particular (that was introduced by Zermelo). 

In 1940 Gëdel proved the consistency of an axiom system (E) 
with the generalized Continuum Hypothesis and the Axiom of 
Choice. Other important results that paved the way for Cohen's 
work were Sierpinski's praof (1947) that the Axiom of Choice 
irnplies the well-orderedness of a set and conversely, and 
Specker's praof (1952) that the generalized Continuum Hypothe
sis imJ?1ies the Axiom of Choice. Paul Cohen's solutions are 
relative ta an axiom system of Zermelo and Fraenkel (ZF; in 1951 
I.L. Novak showed thst E and ZF are mutually consistent), 
whereas Cantor had presented the problem within the context of 
a non-axiomatic ("naive") set theory. Especially Cohen's proof 
(1966) that, with respect ta E without the Axiom of Choice, it is 
consistent to say that the Continuum includes Dedekind's set, 
leads into the new problems of unreachable cardinal numbers 
and transfinite induction - to mention just a few of the new 
problems. Hilbert's final aim, the praof of consistency for entire 
mathematics, is not reached. On the contrary, one can easily 
visualize new Continuum Problems for systems other than Eo In 
set theory, the real problem is consistency. 

As for the analysis, then, the "rigorization" of analysis in 
the nineteenth century and the entire underlying theory of "the 
flowing world", calculus, have given birth ta a horrendous 
collection of conceptual paradoxes. The effort ta algebrize ge
ometry and ta rernove motion and geometric intuition, was made 
at a great priee. Were it not called mathematics, philosophers 
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would (and should) have attacked these developments. 
Analysis is based on infinite sets and on the idea of compar

ing the number of elements in them, which presupposes the 
existence of actually infinite sets. But set theory, which is 
needed in the foundation of analysis, is as full of paradoxes as 
Zeno. What is the rigour gained, then? 

The continuum of real numbers assumes that numbers are not 
really separate entities. The least thing one can say is that the 
concept of real number rests on hazy grounds when compared ta 
natural number. Infinitesimals, infinitely smaU or large magni
tudes have perplexed mathematicians, and rightly so, for centu
ries. There is every reason to believe that the present day 
definitions are considered satisfactary merely because of their 
expediency - calculus works well in practice. But that is exactly 
what Dedekind and Weierstrass could have said of their prede
cessors, like EudoxUB (assuming he was the author of Euclid's 
Elements, Book V, Def. 5) who relied on the concept of motion in 
geometry and on geometrical intuition. 

What is more, continuous analysis requires or implies an 
old-fashioned and paradoxical cosmology, where both time and 
space are continuous and have no smallest or indivisible or even 
separate constituents. It is historicaUy tied to the study of 
heavenly bodies flowing smoothly in space. Perhaps the 
strongest argument for that view comes from theology. An omni
present, omnipotent and omniscient divinity or demon guarantees 
the continuous rotation of the celestial bodies. 

Continuous analysis also produces pseudoproblems both in 
physics and in social sciences: problems that have nothing ta do 
with the subject matter, but reflect the conceptual difficulties in 
the methodology. Most real world entities are best described with 
discrete or finite concepts, and best measured with finite yard
sticks (for concrete examples, see Kasanen, E. "Dilemmas with 
infinitesimal magnitudes", Journal of Economic Dynamics and 
Control 1982; 4:295-301). 

The geometric counterpart of natural numbers is a discrete
point geometry. Indeed, supposing there is a smallest distance in 
space and time, we can in principle number aU points and 
moments using natural numbers alone. There are neither philo
sophical nor mathematical reasons for using numbers other than 
natural. Thus a11 the pseudo-problems of analysis can be re
moved from the theoretical level. But calculus may remain, of 
course, as a useful method for engineers. Had not Hamel been BQ 

fast (1901) in solving Hilbert's fourth problem (Elem. 1.20 applies 
in Euclidean and elliptic geometries), it is possible that already 
then Fermat's discrete-point geometry could have been given 
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more serious reconsideration in mathematics, and its physical 
counterpart, the Principle of the Least Time, in physics. 

We would like ta conclude this essay by a prediction. As we 
see it, there are two choices available for our successors (and 
contemporaries). Either ta sh'ive for simplicity, natural numbers, 
harmonic world-view and for a discrete-point geometry both in 
the ontology of mathematics and in philosophical cosmology, or ta 
continue to accept doubtful primary concepts, paradoxes, real 
numbers, chaotic world-view, and continuous analysis. 

Our forecast on the progress of science is this: Great har
mony in nature will be found, analysis based on natural numbers 
will take off (the pivotaI metaphor of science being the digital 
computer instead of the old orrery), and a discrete cosmology 
will unite the basic forces, the basic constituent of nature, the 
basic forms of matter (triangles and furca crosses), and this will 
be based on atomistic, separate concepts. For a harbinger, look 
at the beauty and hierarchic depth of the fractals evolving by 
the Sea-Horse Bay. 

Once the Greeks played with pebbles on sand and discovered 
the metamorphosis of triangles inta furca crosses in the micro
cosm as well as in the macrocosm. Two millennia later, Fermat saw 
the sarne vision anew. Perhaps two millennia from now, after the 
Bomb, when a new Polar Star is seen heralding a new science, 
Dolphins will be playing with pebbles again? 

A marginal note 

What was Fermat's dessert in 1637, then? Why, indeed, could he 
conclude the praof at Step 19 in our proof reconstruction of 
Prop. 5? He had started from the counter-assumption that FLT 
fails for odd exponents, then transformed (1) by legitime means 
which inc1ude Porisms 1-3, his own 'E-method' and the ancient 
theory of means, and finally reached the transformed formulae 
(16) and (17). But (16) 1/2(b+c)(f3+,t} = a~ = f3~+,;~ and (17) 
1/.{2(b+c)(J3+,;) = a~ = J3~+'t~ with the equality sign do not say 
more than the counter-assumption! Thus the reductio ad ab
surdum succeeds if FLT fails for odd exponents, and it does not 
succeed if FLT does not fail for them. This is another version of 
Eubulides' (originally Epimenides') Liar Paradox, later known ta 
Adam of Balsham and Schoolmen as one of the insolubilia, and 
also one of the main: targets in Russell's, GOdel's and Tarski's 
philosophies of mathematics. In other words, Fermat's final 
strategy appears as a proof that it is impossible ta solve the 
Diophantine equation p(a,2k+1) = p(b,2k+1) + p(c,2k+1) where a > 
b > c > 0, k ~ 1. No wonder he called the praof 'truly remar-
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kable'. 
Moreover, if FLT fails for odd exponents, (16) and (17) with 

the equality signs give rise to second degree equations whose 
roots determine when the equilibrium holds. Let the roots be 
called (6*,'t*). For (16) the y are (a2 ± a.r{1/2(b+c)2-a 2 ,2»): (b+c) 
and for (17) (1/./2)(a2 ± r( (b+c)Z-a2 ,2) ):(b+c). 

University of Tampere 

NOTES 

This essay is dedicated to the memory of our friends Prof. 
Hiromichi Takeda - the last Samurai in the fields of philosophy, 
and Prof. Tadao Yamada - humanist, scientist, musician. They 
were wonderful interpreters of the harmony of Kyoto, of the 
song of nature, and of the best aspects of Japan's culture. 

* Editor's note: In this article, an option has been taken for a 
linear format. Thus the n-th power of x, xn, is written p(x,n) and 
the n-th root of x is written r(x,n). x with subscript y is written 
x"'y. 
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