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ON THE INCOMPLETENESS OFAXIOMATIZED MODELS 
FOR THE EMPIRICAL SCIENCES· 

Newton C. A. da Costa & Francisco Antonio Doria 

1. The starting point 

Chaos theory has been a fast-growing research area since the early 70's, 
a decade after the discovery of (an apparently) chaotic behavior in a 
deterministic nonlinear dynamical system by· E. Lorenz (for references 
see [4]). Chaos scientists usually proceed in one of two ways: whenever 
they wish to know if a given physical process is chaotic the usual starting 
point is to write down the equations that describe the process and out of 
them formally check whether the process satisfies some of the established 
mathematical criteria for chaos and randomness. However those equations 
are in most cases intractable nonlinear differential equations; moreover, 
in general they have no analytical solutions. Therefore chaos theorists 
turn to computer simulations. Usually a Mac or a PC will do the trick: 
the simulation is easily done and for most nonlinear systems one sees a 
confusing, tangled pattern of trajectories on the screen. 

The system looks random, chaotic. Better: there are statistical tests 
such as the Grassberger-Proccacia criterion that guarantee the existence 
of randomness in a computer-simulated system given certain presupposi­
tions and within a margin of error. Yet statistical tests furnish no math­
ematical proof of the existence of chaos in a dynamical system. There is 
always the chance that the system is undergoing a very long and compli­
cated transient state, before it settles down to some nice and regular 
behavior. Therefore how can we prove that a dynamical system that looks 
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chaotic is, in fact, chaotic? 
That problem has been around for some time since the discovery and 

early exploration of what is now called "deterministic chaos". Resear­
chers in the area either try to explore (as we have just explained) through 
computer simulations well-known systems that can be mathematically 
described, to see if they have the looks of a random system, or try to 
develop finely-tuned formal criteria for chaos that can be mathematically 
checked in a system, not just inferred out of a disordered appearance of 
the system's trajectories. 

In a 1983 conference (published in 1985) Morris Hirsch stated that 
time was ripe for a marriage between the" experimental" and "theoretical" 
sides of chaos research: after discussing the Lorenz equations, Hirsch 
remarks [20]: 

( ... ) By computer simulation Lorenz found that trajectories seem to 
wander back and forth between two particular stationary states, in a 
random, unpredictable way. Trajectories which start out very close 
together eventually diverge, with no relationship between long run 
behaviors. 
But this type of chaotic behavior has not been proved. As far as I am 
aware, practically nothing has been proved about this particular 
system ( ... ). 
A major challenge to mathematicians is to determine which dyna­
mical systems are chaotic and which are not. Ideally one should be 
able to tell from the form of the differential equations. 

More recently, in a 1990 conference, S. Smale formulated a closely 
related problem about the Lorenz system and general chaotic dynamical 
systems [29]: 

Are the dynamics of the Lorenz equations described by the geometric 
Lorenz attractor of Williams, Guckenheimer and Yorke? 
Also, the general problem of establishing and analyzing strange 
attractors of differential equations of physics and engineering is still 
wide open. 

Smale asks" for a proof that the Lorenz system has an attractor related 
to the Williams-Guckenheimer-Yorke (WGY) attractor; he also asks for 
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a general characterization of chaos in "concrete" (or "naturally occur­
ring") dynamical systems. Hirsch asks for a decision procedure to test for 
chaos in a system. If such a procedure were available, given the WGY 
attractor one would immediately solve Smale's problem for the Lorenz 
equations just by applying it. 

However we showed [4] that no such a decision method exists. More­
over, for any nontrivial characterization of chaos in a dynamical system 
there will always be systems where proving the existence of chaos is 
unatainable within reasonable standard axiomatizations. Chaos theory, as 
well as dynamical systems theory, are both undecidable - there is no 
general algorithm to test for chaos in an arbitrary dynamical system -
and incomplete - there are infinitely many dynamical systems that will 
look chaotic on a computer screen, for they are chaotic in an adequate 
class of standard models for axiomatized mathematics, but such that no 
proof of that fact will be found within the usual formalizations of dyna­
mical systems theory. Similarly, there are systems whose properties are 
(formally) equivalent to the proof of intractable problems such as Fer­
mat's Conjecture, or Riemann's Hypothesis, or the P?NP question [10], 
and those systems are densely dispersed in a natural topology among all 
dynamical systems [13]. Classical mathematics is dramatically incomplete 
in the sense of G6del, and full of extremely difficult problems, that can 
arise in innocent-looking contexts. 

Worse yet: all our first examples for undecidability and incompleteness 
within axiomatized physics could be formally reduced to elementary 
arithmetic problems [4] [13]. However we later discovered that that 
reduction cannot always be made, as we can obtain examples of intrac­
table problems in the axiomatized sciences which are not elementary 
number-theoretic problems in disguise. They stand beyond the pale of 
arithmetic; they are much more difficult than any arithmetical problem, 
and yet they look like commonsensical mathematical statements. 

There are even weirder situations: we can obtain formal expressions 
that describe physical systems such that nothing but trivialities can be 
proved about them. And again those systems may be shown to lie fully 
outside the arithmetical hierarchy, since they belong to the· non-arith­
metical portion of set theory (if we are working, say, within Zermelo­
Fraenkel set theory). Those are truly faceless systems, very much like 
generic sets in forcing models; however their construction shows no 
relation to the usual forcing tools and can be proved to be outside the 
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reach of the usual forcing techniques. 
Our results are consequences of general incompleteness theorems that 

can be found in our papers [4] [5] [6] [7] [8] [9] [13] [14] [15] [16] [17]; 
other references are [24] [32] [33]. In the present paper we summarize 
and state without proofs our chief results, with a few comments to clarify 
their meaning; an Appendix sketches a more formal treatment, which is 
fully available in the references. 

2. Axiom systems and independence proofs 

Mathematical sentences that are undecidable with respect to sensible 
axiomatic systems have been known since the 19th century proof of the 
independence of the Parallel Postulate from the remaining axioms and 
postulates of geometry. Here we have a meaningful and "intuitively true" 
assertion in a "natural" model for geometry which couldn't be deduced 
from the then available axiom system for that discipline. So, nothing new 
here. 

However Euclid's system is notoriously inadequate according to our 
current criteria for mathematical rigor (even if the 19th century indepen­
dence results remain when geometry is reformulated in today's language). 
The main surprise that stemmed from G6del's 1931 incompleteness 
theorems is the conclusion that, even if we adhere to contemporary 
standards in the formulation of mathematical proofs, all the usual axiom 
systems strong enough for most of mathematics turn out to be incomplete; 
it is enough that they include arithmetic for undecidable sentences to 
creep up within them. 

Yet, due to G6del's weird examples of undecidable sentences, the hope 
remained that undecidability and incompleteness would always be peri­
pheral to mainstream mathematics. That is to say, everyday mathematics, 
as practiced by the professional mathematician, would be untouched by 
G6del 's stormy results. (In a recent interview Rene Thom expressed that 
same hope, when he said that G6del' s results were to be seen as "road 
signs," "warning posts," meaning that one shouldn't go further in that 
direction, but that they had no meaning for the practicing mathematician 
[37].) 

Cohen's independence proof of the continuum hypothesis from the 
axioms of Zermelo-Fraenkel set theory shattered that hope, since the 
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continuum hypothesis affects innumerable important results in topology, 
analysis and even algebra. 1 As it is well known, forcing techniques led 
to the independence proof of several open questions in mathematics such 
as Whitehead's problem in the theory of abelian groups, but the applica­
tion of forcing demands high mathematical ingenuity, while being re­
stricted to nonabsolute assertions in set theory. Thus, finite objects -
which are absolute due to their finiteness - remained outside the scope 
of forcing, while the success of forcing applications and techniques 
strengthened the feeling that the domain of the finite should be regarded 
as the ground plan from which arose the whole of mathematics. 

That definitely seems today to be a rather risky assumption. 

3. Hilbert's 6th and 10th problems 

Around 1987 the present authors started a research program whose main 
goal was to fully axiomatize physics and to apply modern techniques 
from mathematical logic to problems in physics. The motivation was 
found in a mathematical landmark: the 1900 list of 23 problems that 
David Hilbert presented to the Second International Congress of Math­
ematicians in Paris. The sixth problem in Hilbert's list asks for an axiom­
atic formulation of physics; the tenth problem asks for a decision proce­
dure to verify whether a polynomial Diophantine equation with integral 
coefficients does have solutions. Both problems are fused in our results. 

We had a twofold goal in that program. First, we wished to place 
physics (and, if possible, any mathematically-formulated area in the other 
empirical sciences) upon a firm and rigorous footing (according to current 
conceptions). Second, we wished to obtain "meaningful" undecidable 
sentences within those theories. Somehow we hoped that formally un­
decidable assertions in an empirical science might turn out to be, let us 
say, "empirically" decidable. In order to proceed we drew up a list of a 
few problems that might lead to our goal. We believed that classification 
schemes for spacetimes in general relativity might allow the construction 
of unsolvable problems and of undecidable sentences within the corres-

1 But recall that the algoritmic unsolvability of Hilbert's 10th Problem as well as the 
Paris-Harrington result imply examples of sensible undecidable sentences in elementary 
arithmetic. 
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ponding theory, and we had the feeling that Hirsch's decision problem for 
chaos theory [20] was algorithmically unsolvable, and that its investiga­
tion might prove fruitful. As our tool we only had forcing at the begin­
ning of our investigation, and forcing was applied with modest results to 
the first question and related areas [8] [14]. It soon became apparent that 
we had to develop new methods to attain our goals. The literature on 
forcing has mainly to do with fine technical points in set theory and in 
the theory of infinite cardinals but for a few well-described resounding 
results such as Solovay's on measurable sets over the real line. It was 
never evident to us how to. apply those results to the empirical sciences, 
and the few consequences we could squeeze out of forcing within some 
axiomatized theories look quite far from everyday life [8] [14]. 

4. Suppes predicates and the axiomatics of classical physics 

Suppes' ideas on the axiomatization of theories with the help of set-theo­
retic predicates gave us the first essential breakthrough in our treatment 
of decision problems in physics. The whole road from the way physics 
is practised by a theoretician towards the axiomatic treatment we devel­
oped for it is pretty spontaneous. Consider the example of classical 
mechanics. A rigorous and all-encompassing treatment of mechanics was 
first given by C. Lanczos in his wonderful treatise on The Variational 
Principles of Mechanics in 1949 [23]. Lanczos, who was very close to A. 
Einstein, inspired himself in the earlier, brilliant treatise by Hertz [19], 
and formulated classical mechanics as an interpretation of some geometri­
cal structures from Riemannian geometry. About ten years later R. Palais 
circulated a set of notes where classical mechanics was garbed in a new 
geometrical dress, the language of fiber bundles, connection forms and 
symplectic geometry. The first time that new presentation of classical 
mechanics appeared in book form was as a chapter in S. Sternberg's 
textbook, Lectures on Differential Geometry [31]; we can also quote S. 
MacLane's notes [26]. However the definitive presentation of classical 
mechanics as an interpretation of the differential geometry of symplectic 
bundles and related structures is to be found in the Abraham-Marsden 
treatise, Foundations of Mechanics, whose first edition appeared in 1967 
[1]. 

Our axiomatic treatment for mechanics stems from that lineage. Once 
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we have translated mechanical concepts as geometrical structures within 
an adequately rigorous mathematical context, we can reformulate every­
thing inside the framework of Zermelo-Fraenkel set theory and sum­
marize the whole of mechanics as a single (albeit very complicated) 
Suppes-like set-theoretic predicate within a first-order language [3] [7] [8] 
[9]. 

An axiomatic treatment adds a tremendous amount of extra rigor to our 
presentation of an empirical science. Yet the added rigor is meaningless 
if we can't pile up something new on it. As we said, we started looking 
for independence results in the axiomatized empirical sciences, since 
independence results are the trademark of axiomatic systems framed in 
classical first-order languages that include arithmetic. The path that led 
to forcing was cumbersome and unpromising; again P. Suppes helped us 
when he suggested that we should check Richardson's [27] 1968 exam­
ples of unsolvable problems in analysis and "see if they have any ap­
plication in quantum mechanics, as they deal with sines and cosines." 
(JV e quote Suppes' words [36].) 

However we immediately noticed that Richardson's constructions were 
in fact realizations of a functor from the theory of formal systems (here 
coded as Diophantine equations) into classical elementary analysis. We 
had some previous intuition that such a fully algorithmic functor might 
exist, one that would translate metamathematics into questions about 
elementary functions and their properties. Yet we had no example of such 
a functor before we learned of Richardson's results [11] [12]. 

Richardson's results are framed as undecidability results; as such they 
look rather weak, and it isn't immediately apparent that they in fact imply 
a full-fledged incompleteness theorem for the language of classical analy­
sis. (Kreisel [22] had previously delved on them, while Suppes was at 
first rather skeptical about the incompleteness phenomena implied by 
Richardson's examples.) 

5. Incompleteness 

Out of Richardson's examples we immediately obtained almost by chance 
something that had previously seemed impossible, an expression for the 
halting function 'within a rather simple mathematical language, the lan­
guage of classical analysis: let ~(q) be the Turing machine of index n 
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that acts upon the natural number q [28]. Granted that ~ (n, q) be the 
halting junction for Mn(q), ~ (n, q) = 1 if and only if ~(q) stops over 
q, and ~ (n, q) = 0 if and only if Mn(q) doesn't stop over q. 

W ~ suppose that our theories T are arithmetically consistent, that is, 
that the model we are interested in represents arithmetical assertions by 
the standard model for arithmetic. (One might take T 2 ZFC.) Let 
Pn,q(xh x2, ... , xJ be a universal Diophantine polynomial [21]. Let a be 
the sign function, a (± x) = ± 1, a (0) = O. Then: 

Proposition 5.1 (The Halting Function.) If Tis arithmetically consistent, 
then: 

~ (n, q) = a (Gn, q), 

Gn, q = J _~Gt>Cn,q(x)e-X2 / (l + Cn,q(x))dx, 

Cn,q(x) = A Pn,q(x1, ••• , xJ D 

(A is one of Richardson's maps from the Diophantine polynomials into 
elementary real analysis [4].) 

Out of that we proved a first general undecidability and incompleteness 
theorem: we say that a predicate P in our formal language is nontrivial 
if there are term-expressions ~, r in our theory T such that T r- P(~) and 
Tr- -, per). 
Then: 

1. In T, given any nontrivial predicate P there is a countably infinite 
family of term-expressions ~ m such that there is no general algorithm 
to decide, for an arbitrary m, whether or not P(~J. 
2. Even if we can prove that Tr- P(~J, the function gem) that 
bounds those proofs (whenever they can be done) isn't recursive. 
Therefore those proofs may be arbitrarily difficult. 
3. There are (denumerably) inf1nite many term-expressions ~ in our 
language such that in an adequate model M it is true that P(O, while 
our theory T neither proves nor disproves that assertion. 

Things go much farther, and finiteness is no hindrance here; as an 
example we now quote a recent result on the incompleteness of the theory 
of finite noncooperative games with Nash equilibria, a result that has 
immediate relevance for neoclassical economics [16]. 

(As it is well-known, the theory of games was developed by John von 
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Neumann out of some ideas and a major conjecture by Emile Borel with 
a view towards its applications in economics; in the early 50's Kenneth 
Arrow and Gerard Debreu translated the theory of competitive markets 
into the language of game theory, which allowed them to prove the 
central result of Walrasian neoclassical economics: every competitive 
market has a set of equilibrium prices. So, when one talks about games, 
one is talking about competitive markets.) 

Proposition 5.2 If T is arithmetically consistent then: 
1. Given any nontrivial property P of finite noncooperative games, 
there is an infinite denumerable family of finite games r m such that 
for those m with TI- "P(r m)," for an arbitrary total recursive func­
tion g:w~w, there is an infinite number of values for m such that the 
length of the proof of pr m from the axioms of T is strictly larger 
than g( II pr m II), where II pr m II is the length of the formal expression 
that describes pr m in the language of T. 
2. Given any nontrivial property P of finite noncooperative games, 
there is one of those games r such that TI- "p(r)" if and only if 
TI- "Fermat's Conjecture." 
3. There is a noncooperative game r where each strategy set Sj is 
finite but such that we cannot compute its Nash equilibria. 
4. There is a noncooperative game r where each strategy set Sj is 
finite and such that the computation of its equilibria is T -arithmetical­
ly expressible as a IT m+l problem, but not to any E k problem, k :::; 
m. 
5. There is a noncooperative game r where each strategy set Sj is 
finite and such that the computation of its equilibria isn't arithmet­
ically expressible. 

Here lies the big surprise: everything turns out to be undecidable; each 
nontrivial property, even the simplest one, leads to an incompleteness 
proof. There are'natural problems that turn out to be as difficult as Fer­
mat's problem; there are natural problems that are equivalent to arith­
metic problems as high as one wishes in the arithmetical hierarchy; and 
there are natural problems that lie outside the arithmetical hierarchy. 

Our constructions essentially arise from the existence of expressions for 
the halting function and for characteristic functions in all arithmetic 
degrees of unsolvability within elementary analysis. No forcing is re­
quired; in fact we still wonder why those results weren't discovered 
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earlier. The main constructions are pretty straightforward; however in 
order to obtain them we had to believe from the very beginning that 
incompleteness is something that belongs to the way we conceive mathe­
matics. Incompleteness is a natural phenomenon according to our current 
views about mathematics. And yet everybody seemed to shy away from 
that fact of mathematical life. 

We can give an idea of the scaffolding that supports our results. Con­
sider a universal Turing machine. Assuredly we can recursively enume­
rate the natural numbers over which the machine stops, but the complem­
entary set of numbers which give rise to never-ending infinite loops 
forms, as we know, a productive, non-recursively enumerable set. Sup­
pose now that we have reconstructed Turing machine theory within 
elementary arithmetic A. We have a list of theorems like AI- "The 
universal machine U(n) stops," where n is a natural number such that, 
in fact, U(n) stops. However the listing of theorems of the form AI­
"The universal machine U(n) never stops" cannot exhaust all possibilities 
for nonstopping machines, and so there will be a n' such that U(n') never 
stops (in the 'real' world and in a standard model), but A isn't strong 
enough to prove it. 

That result is the essence of G5del's first incompleteness theorem. It 
can also be given the following interpretation: within our formal theory 
A, in the place of a universal machine U we can take an universal polyn­
omial p over the integers Z parametrized by n [21]. Sentences such as 
"The universal machine U (n) never stops" become equivalent to "The 
polynomial pen, ... ) has no roots over Z." And if A cannot prove that U 
will never stop over n', it will never be able to prove that pen' , ... ) = 0 
has no integer solutions. With the help of Richardson's functor we then 
translate those ideas into the domain of smooth and piecewise smooth 
elementary functions in analysis. 2 

6. More results 

Our undecidability and incompleteness theorems have proved extremely 
fruitful. The following problems have been dealt with our methods: 

2 For technical details see the Appendix. 
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- The integrability problem in classical mechanics. There is no gen­
eral algorithm to decide, for a given hamiltonian, whether or not it 
is integrable. Also there will be both integrable and nonintegrable ha­
miltonians in M but such that T is unable to prove it [4]. 
- The Hirsch problem. Is there an algorithm to check for chaos given 
the expressions of a dynamical system? No: there is no such a gen­
eral algorithm, and there will be systems that look chaotic on a 
computer screen (that is to say, they are chaotic in our model M) but 
such that proving their chaotic behavior is impossible in T [4] [20]. 
-.Penrose's thesis. Penrose conjectured that classical physics offers 
no examples of noncomputable phenomena. We gave a counterexam­
ple to that assertion [5] [32] [33]. 
- "Smooth" problems equivalent to hard number-theoretic problems. 
We gave an explicit example of a dynamical system where there will 
be chaos if and only if Fermat's conjecture is provable. We also sho­
wed that (given some conditions) those 'nasty' problems are dense 
in the space of all dynamical systems [13]. 
- Arnol'd's problems. Arnol'd formulated in the 1974 AMS Sym­
posium on the Hilbert Problems [2] some questions dealing with 
algorithmic decision procedures for polynomial dynamical systems 
over Z. We showed that again there are no general algorithms avail­
able, and that the theory of those systems is incomplete [9] [15]. 
- Problems in mathematical economics. Lewis [24] pointed out that 
our results entail the incompleteness of the theory of hamiltonian 
models in economics. They also entail the incompleteness of the 
theory of Arrow-Debreu equilibria and (what is at first sight sur­
prising) the incompleteness of the theory of finite games with Nash 
equilibria [9] [16]. 
- Problems worse than any number-theoretic problem. They can be 
constructed (and look "natural") with our techniques [9]. 

7. Forcing and our techniques 

Which is the relation between our techniques for the construction of 
undecidable statements and the Cohen-Solovay kind of forcing? In order 
to answer that question we must conceive a theory as a Turing machine 
that accepts strings of symbols - well-formed formulae - and stops 
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whenever those strings of symbols are theorems of the theory. If not, it 
never halts and enters an infinite loop. 

Now consider Zermelo-Fraenkel axiomatic set theory, ZF. If MZF is 
the corresponding proof machine for ZF, and if CH is the Continuum 
Hypothesis, we know that MzF(CH) never halts. Accordingly, there is a 
Diophantine polynomial PZF(CH, Xb ... ) that has no roots over Z, but 
since CH is independent of the axioms of ZF, there can be no proof 
(within ZF) of the statement "PzF(CH, X h ... ) = 0 has no roots over Z." 
(If there were one such proof, we would then be able to decide CH in 
ZF.) With the help of our techniques (see Proposition 5.1 above) we can 
obtain a two-step function <PZF(m) such that, if mCH is a G6del number for 
CH, then both ZF .t-<PZF(mCH ) = 0 and ZF ~<pZF(mCH) = 1. Therefore, 
every undecidable statement constructed with the help of forcing within 
ZF (or even within weaker theories, provided that they include elemen­
tary arithmetic) gives rise to undecidable statements according to the 
present tools; if the theory considered is too weak to encompass analysis, 
then we can apply to it a construction like the one in Proposition A.18 in 
the Appendix with the same results. 

Moreover the converse isn't true, that is, there are some (actually, 
infinitely many) undecidable statements which can be constructed accor­
ding to the present techniques, but such that no forcing statement will be 
mapped on them if we follow the preceding procedure. Finite objects are 
forcing-absolute, but we have seen that we can construct undecidable 
statements about finite objects in ZF say, again through the <P function in 
Proposition 5.1. If mFin is the G6del-coding for one of those statements, 
then "<PZF(mFin) = 0" cannot be proved in ZF. So, there is a (metamathe­
matical) algorithmic procedure that goes from every undecidable state­
ment in ZF onto undecidable statements about the <PzF function; and yet 
forcing statements are only a portion of that map, since there is much 
more in it. 

How general are our results? Are there undecidable statements beyond 
them? 

First, we must add that it isn't clear whether there are other techniques 
besides Cohen-forcing for the construction of undecidable statements 
within fragments of set theory . We believe however that one will even­
tually prove that there are infinitely many such particular techniques, 
which will turn out to be irreducible to forcing. (At present, that assertion 
is just a matter of faith in the inner wealth of mathematics.) Second, our 
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technique is a truly general one; it starts out of any previously proved 
undecidable statement within an axiomatic system and allows the con­
struction of infinitely many new undecidable statements of any desired 
degree of difficulty within the arithmetic hierarchy and even beyond. 
General results tend to be very simple, and so are our main ideas. They 
are also, as we have seen, highly effective. A point to be made is that the 
semantics for those undecidable statements of us require nonstandard 
models: all Diophantine equations pC ... ) = 0 behind our undecidable 
statements have no roots in standard models but have integer solutions in 
nonstandard models. Now if we start from two contradictory, forcing­
induced undecidable statements t and -, t with respect to ZF supposed 
consistent, the forcing-dependent semantics for both ZF + t and ZF + 
-, t is given by standard models; the transformed theories ZF + t + ~~ 
= 0 and ZF + -, t + ~ -,~ = 0 have also standard models, but we requi­
re nonstandard models for the new ZF + t + ~~ = 1 and ZF + -, ~ + 
~--,~ = 1. The epistemological consequences of such a multiplication of 
models are still unclear. 

Which is the weakest axiomatized theory to which our constructions 
can be applied? There is a beautiful theorem by S. Feferman ([28], p. 
171ft) where one learns that, given any recursively enumerable Turing 
degree a~T 0', we can algorithmically construct an axiomatized theory 
T of that degree. Again there is a Turing machine MT that stops over 
inputs coding well-formed formulae that are theorems ofT, and otherwise 
never halting. We can repeat the argument sketched above if we can write 
down polynomials in T and if we can at least obtain an expression as the 
one in Proposition A.18. Examples of theories where those constructions 
are possible can be found in [30], p. 334ff. However it isn't clear whe­
ther there are similar constructions for every weak theory. Anyway our 
construction can be easily done for all theories of Turing degree 0' and 
is perfectly general for theories at that level of unsolvability. 

8. A look beyond 

Let's reduce our ideas and techniques to their bare essentials. Suppose 
that we start from classical axiomatic set theory, which isa framework 
big enough to contain all of everyday mathematics within it. Let's look 
at set theory as an abstract construction, a collection of strings of symbols 
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from an alphabet - the collection of all sentences of set theory. We 
know that we have here a recursively enumerable sequence of objects 
which can be effectively mapped onto the natural number sequence, so 
that we can get the whole of our axiomatic sequence coded (through a 
G5del numbering) into an infinite recursively enumerable subset of the 
natural number sequence. Such a sequence an be embedded into several 
continuous mathematical structures within set theory itself! One of those 
maps is Richardson'S, which we have just started to exploit, but there are 
infinitely many others. 

Once we have thus codeg the whole of mathematics into itself, a whole 
new family of questions appears: say, since we have mapped an axiomatic 
system into a much larger structure, can we now go back and define out 
of our embedding some "hyperaxiomatic" structure with brand-new (and 
sensible) truths and theorems? Do we get something really new here, or 
can we reduce our hyper-extensions to the traditional setting of first-order 
recursively enumerable theories? 

We know the answer: there definitely are several new results to be 
found in those maps of mathematics redrawn over its own belly. 

9. Conclusion 

However we would like to emphasize a more modest and yet very impor­
tant point here. We do it by repeating the conclusion in the first of our 
papers [4]: 

What can we make out of all [those manifold incompleteness theo­
rems]? We cautiously suggest that the trouble may lie not in some 
essential inner weakness or flaw of mathematical reasoning, but in 
a too narrow, too limited concept of formal system and of mathemat­
ical proof. There is a strongly mechanical, machinery-like archetype 
behind our current formalizations for the idea of algorithmicity that 
seems to stem from an outdated 17th century vision it la Descartes 
(even if our current notion of proof is traced back to Greek mathe­
matics). Also a first-order language such as the one for Zermelo­
Fraenkel theory is too weak: even if we can prove all of classical 
mathematics within it, it is marred by the plethora of undecidability 
and incompleteness results that we can prove about it, and which 
affect interesting questions that are also relevant for mathematically-
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based theories such as physics. 
The authors certainly do not know how to, let us say, safely go 
beyond the limits of the presently available concepts of computabil­
ity, algorithmicity, and formal system, but they feel that if there 
are so many quite . commonplace things that 'should' somehow be 
provable or decidable within a sensible mathematical structure, and 
which however turn out to be algorithmically undecidable or un­
provable, then one cannot blame the whole of mathematics for that. 
Mathematics isn't at fault here. The problem lies in our current ideas 
about formalized mathematics. They are too weak. We must look 
beyond them. 
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A. Appendix: The formal machinery 

We suppose that our theories are formalized within a first-order classical 
language with equality and the description operator. . 

We follow the notation of [4]; w denotes the set of natural numbers, Z 
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is the set of integers, and R are the real numbers. Let T be a first-order 
consistent axiomatic theory that contains formalized arithmetic Nand 
such that T is strong enough to include the concept of set and classical 
elem~ntary analysis. (We can simply take T = ZFC, where ZFC is 
Zermelo-Fraenkel set theory with the axiom of choice.) If Lr is the 
formal language of T, we suppose that we can form within T a recursive 
coding for LT so that it becomes a set Lr of formal expressions in an 
adequate interpretation of T. Objects in T will be noted by lower case 
letters x, y, Xb Yi' Predicates in T will be noted P, Q, .... 

From time to time we will play with the distinction between an object 
and the expression in Lr that represents it. If x,y are objects in the the­
ory, ~, t E Lr are term-expressions for those objects in the formal 
language of T. In general there is no 1-1 correspondence between objects 
and expressions; thus we may have different expressions for the same 
functions: 'cos (l/2}7r' and '0' are both expressions for the constant 
function O. We note by r x 1 an expression for x in ~. We allow the 
following abuse of language: predicates P sometimes apply to objects in 
T and sometimes apply to expressions in Lr (say, P(x) or P(~»; meaning 
will be clear from context. 

We emphasize that proofs in T are algorithmically defined ways of 
handling the objects of Lr; for the concept of algorithm see [4] [28]. A 
review of concepts from computation theory and applications (algorithms, 
Turing machines, formal systems and the like) can be found in [4] [25] 
[28]. Ideas from logical number theory, such as the Matijasevich-Davis­
Robinson-Jones theorem and universal polynomials can be found in [18] 
[21]. 

Undecidability and Incompleteness in T 

Definition A.1 T is arithmetically consistent if and only if the standard 
model N for N is a model for the arithmetic sentences of T [4] [13]. 0 

Let now (P be the algebra of polynomial expressions on a finite number 
of unknowns over the integers Z; we identify CP to the set of expressions 
for Diophantine polynomials in T. Let e be the set of expressions for real 
elementary functions on a finite number of unknowns, while .9is the set 
of expressions for real-valued elementary functions on a single variable. 
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We assert [4]: 

Proposition A.2 (Richardson's Functor.) Let Pm(Xb X2 , ••• ,xJ = 0 be a 
family of expressions for Diophantine equations parametrized by the 
positive integer m in an arithmetically consistent theory T. Then there is 
an algorithmic procedure a : CP ~ e such that out of Pm E CP we can 
explicitly obtain an expression 

fm(xbx2'···'xJ = apm(XbX2,···,xJ, 
fm E e, such that fm = 0 if and only if fm =::;;; 1 if and only if there are 
positive integers Xl, x2, ••• , ~ such that Pm(x1, ••• , xJ = o. 

Moreover there are algorithmic procedures t' ,t": CP ~ 7such that we 
can obtain out of an expression Pm two other expressions for one-variable 
functions, gm(x) = t'Pm(xl, ... ) and hm(x) = t" Pm(xh ••• ) such that there 
are positive integers Xl, ... with Pm(Xl, ... ) = 0 if and only if gm(X) = 0 
and hm(x) =::;;; 1, for all real-valued x. D 

Proposition A.3 (Incompleteness of Real Analysis.). If T is arithmeti­
cally consistent, and if we add the absolute value function I x I to 7and 
close it to obtain an extended set of expressions ~ we have: 

1. We can algorithmically construct in T a denumerable family of 
expressions for real-valued, positive-definite functions km (x) ~ 0 so 
that there is no general algorithm to decide whether one has, for all 
real x, km(x) = O. 
2. For a model M such that T becomes arithmetically consistent, 
there is an expression for a real-valued function k(x) such that M """ 
v x E R k(x) = 0 while T H-V x E R k(x) = 0 and T H-3X E 
Rk(x);t: O. D 

If ~ (as in Proposition A.3) results out of Pm, we write km = A Pm. 

Equality is undecidable in LT 

Corollary A.4 If T is arithmetically consistent then for an arbitrary real­
defined and real-valued function f there is an expression ~ E Lr such that 
M 1= ~ = f, while T H-~ = f and T rI- --, (~ = t). 

Proof· Put ~ = f+ k(x), for k(x) as in PropositionA.3. D 
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The Halting Function and expressions for complete degrees in the 
arithmetical hierarchy 

Let Pn,q(xh x2, ••• , xJ be a universal polynomial [21]. Since ~ has an 
expression for I x I (informally one might have I x I = +v X2), it has an 
expression for the sign function a(± x) = ± 0, (J (0) == O. Therefore we 
can algorithmically build within the language of analysis (where we can 
express quotients and integrations) an expression for the halting function 
cp (n, q) [4]: 

Proposition A.S (The Halting Function.) If T is arithmetically consis­
tent, then: 

cp (n, q) = a (Gn, q), 

Gn, q = J _:,ooCn,q(x)e -x2 / (1 + Cn,q(x))dx, 

Cn ,q(x) = A Pn,q(xh ... , xr). 0 

Remark A.6 There are infinitely many expressions for cp (n, q) in LT ; 

however due to incompleteness some of them will never be proved to 
equal the halting function in T. 0 

Definition A.7 A predicate P in ~ is nontrivial if there are x, y such 
that TI- P(x) and T I- -, P(y). 0 

If ~ E ~ is any expression in that language, we write II ~ II for its 
complexity, as measured by the number of letters from T's alphabet in 
~. Also we define the complexity of a proof ~(O of ~ in ~ to be the 
minimum length that a deduction of ~ from the axioms of T can have, as 
measured by the total number of letters in the expressions that belong to 
the proof. Let p' be any nontrivial predicate, and let B"::J~. 

Then: 

Proposition A.8 If T is arithmetically consistent, then: 
1. There is an expression ~ E B so that T ~ -, P(~) and T ~P(O, 
but M models P(~), where M makes T arithmetically consistent. 
2. There'is a denumerable set of expressions for functions ~m(x) E 
B, mEw, such that there is no general decision procedure to ascer-
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tain, for an arbitrary m, whether P (~m) or .., P (~J is provable in 
T. 
3. Given the set K = {m: T I- P(lll)}, and given an arbitrary total 
recursive function g:w-+ w , there is an infinite number of values for 
m so that CT(P(lll» > g( II P(lll) 1\). D 

Here Ii\ recursively codes the set ~m of expressions in Lr. 
That result was the first general incompleteness theorem obtained by 

the authors [4]; it can be derived from Rice's theorem [25] [28] in com­
puter science, which is an equally general result, but the proof we origin­
ally gave for Proposition A. 8 is weaker than Rice's theorem, since it only 
leads to unsolvable problems of Turing.,.degree not higher than 0'. 

Problems equivalent to Fermat's Conjecture 

A related result is the equivalence between proving famous arithmetic 
conjectures and the provability of a given nontrivial property P within our 
formal system [13] . We need: 

Proposition A.9 If T is arithmetically consistent then we can explicitly 
obtain in it a polynomial p( < x,y ,z,m > ,vh ... ,vJ over Z such that for all 
x,y,z,m E w, x,y,z> 1 and m>2, 

xm + ym ;t: zm 

if and only if for all x,y,z,m as above, 
V vl , ••• , Vk E w p«x,y,z,m>,vb ... ,vJ>O. D 
See for the proof either [18] or (explicitly) [13]. 
Now let C(x,y,z,m,v) = A p( < x,y,z,m> ,Vb ... ), as after Prop. A.3. 

Proposition A.tO Given our arithmetically consistent theory T, we can 
explicitly and algorithmically construct within Lr the formal expression 
for a function ~(x, y, z, m) with values in the set {O, I} such that: 

1. V x, y, z, m E Wo 4> (x, y, z, m) = 0 if and only if Fermat's 
Conjecture is true. 
2. 3 x, y, z, mE Wo 4> (x, y, z, m) = 1 if and only if x, y, z, m is 
a counterexample for Fermat's Conjecture. 

Moreover, ~ (x,y,z,m) can be constructed entirely within the language 
of elementary real analysis. 

Proof· We write the expression 



92 N. C. A. DA COSTA & F. A. DORIA 

K(x, y, z, m) = J _:'OO(C(x, y, z, m, u)e-U2 / (1 +C«x,y,z,m,u» du, 
and then put 
cp (x, y, Z, m) = (J (K(x,y,z,m) / (l + K(x,y ,z,m»). 

Here (J (± x) = ± 1 and (J (0) = 0 is the sign function. D 
We can go beyond that and obtain a constant function {3 such that {3 = 

o if and only if Fermat's Conjecture is true, and {3 = 1 if and only if 
Fermat's Conjecture is false, within an arithmetically consistent theory T: 

Proposition A.ll Given our arithmetically consistent theory T, we can 
explicitly and algorithmically construct within Lr the formal expression 
for a constant function {3 which is either equal to 0 or 1 such that: 

1. {3 = 0 if and only if Fermat's Conjecture is true. 
2. {3 = 1 if and only if Fermat's Conjecture is false. 

Moreover, (3 can be constructed entirely within the language of elemen­
tary real analysis. 

Proof' Notice that, when extended to the reals in R4
, <t>(x,y,z,m) ~ O. 

We therefore write: 
L = J R4 (cp(x,y,z,m)exp [-(x2 + y2 + Z2 + m2

)] / 

(1 + cp (x,y,z,m») dxdydzdm. 
(Obviously exp x = eX.) Then {3 = (J (L). D 

Expressions for functions in higher degrees 

Corollary A.12 If T is arithmetically consistent then we can explicitly 
and algorithmically construct in Lr an expression for the characteristic 
function of a subset of w of degree 0" . 

Proof' We simply use Theorem 9-11 in [28] (p. 132). Details are given 
in [9]. Let A C w be a fixed infinite subset of the integers; it is our 
oracle set. 

Definition A.13 The jump of A is noted A'; A' = {x:cp~(x)-l.}, where 
cp~ is the A-partial recursive algorithm of index x. D 

An oracle Turing machine cp~ with oracle A can be visualized as a two-
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tape machine where tape 1 is the usual computation tape, while tape 2 
contains a listing of A. When the machine enters the oracle state so, it 
searches tape 2 for an answer to a question of the form "does w E A?" 
Only finitely many such questions are asked during a converging com­
putation; we can separate the positive and negative answers into two 
disjoint finite sets Du(A) and D~(A) with (respectively) the positive and 
negative answers for those questions; notice that Due A, while D~ C w -
A. We can view those sets as ordered k- and k*-ples; u and v are recur­
sive codings for them [28]. The Du(A) and D~(A) sets can be coded as 
follows: only finitely many elements of A are queried during an actual 
converging computation with input y; if k' is the highest integer queried 
during one such computation, and if dA C cA is an initial segment of the 
characteristic function cA, we take as a standby for D and D* the initial 
segment dA where the length l(dA) = k' + 1. ~,A denotes the initial seg­
ment of A determined by the (converging) input y. 

The oracle machine is equivalent to an ordinary two-tape Turing ma­
chine that takes as input < y, ~,A >; Y is written on tape 1 while dy,A is 
written on tape 2. When this new machine enters state So it proceeds as 
the oracle machine. (For an ordinary computation, no converging com­
putation enters so, and dy,A is empty.) It is a well-known fact that there is 
a 1-1 recursive function p that maps indices for oracle machines into 
indices for Turing machines. Therefore, rJ>~(y) = rJ> p(x) ( < y, dy,A> ). 

Now let us note the universal polynomial p(n,q,x1, ... ,xn). We can 
define the jump of A as follows: 

A' = {p (z):3 Xl""'~ Ew pcp (z), <z,dz,A>' x1, ... ,xn) = OJ. 
With thehelp of the A map defined after Proposition A.3, we can now 

form a function modelled after the rJ> function in Proposition A.S; it is the 
desired characteristic function: 

co'(x) = ¢ (p (x), < x, dx 0' > ). 
(Actually we have proved more; we have obtained 

cA,(x) = ¢ (p (x), < x, dx,A> ), 
with reference to an arbitrary A C w.) 

We write ¢(2)(x) = co"(x), D 

We recall [28]: 

Definition A.14 The complete Turing degrees 0, 0', 0", ... O(p), ... , 
P < w, are Turing equivalence classes generated by the sets 0, 0', 0", ... , 
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0(P), ••• 0 
Now let o(n) be the n-th complete Turing degree in the arithmetical 

hierarchy. Let 7 (n,q) = m be the pairing function in recursive function 
theory [28]. For cp (m) = cp (7 (n,q)), we have: 

Corollary A.IS (Complete Degrees.) 1fT is arithmetically consistent, for 
all pEw the expressions cpP(m) explicitly constructed below represent 
characteristic functions in the complete degrees O(P). 

Proof' From Proposition A.12, 
cp(O) = co(m) = 0, 
qP)(m) = co.(m) = cp(m), 
(jJ(n)(m) = CO(n)(m), 

for CA as in Proposition A.12. 0 

Incompleteness theorems 

We now state and prove several incompleteness results about N and its 
extension T; they will be needed when we consider our main examples. 
We recall that the truncated difference operation "!.," 

x.!y =x-y, x-y ~ 0, 
0, x-y < 0, 

is a primitive recursive operation on w. 

Proposition A.16 If T is arithmetically consistent, then we can algorith­
mically construct a polynomial expression P(XI' ... , xn) over Z such that 
M ~ \lXI, ... , Xn E W P(XI' ... ,xJ > 0, but 

T ~\I Xl, ... , Xn E W P(Xh ... ,XJ > 0 
and 

T ~3 Xl, ... , ~ E W P(XI' ... ,xJ = o. 

Proof' Let ~ E Lr be an undecidable sentence obtained for T with the 
help of Godel's diagonalization; let ~ be its Godel number and let mT be 
the Godel coding of proof techniques in T (of the Turing machine that 
enumerates all the theorems of T). For a universal polynomial p(m, q, 
Xh ... ,xj we have: 

P(Xh ... ,xJ = (p(mT,n~,xI' ... ,XJ)2. 0 
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Corollary A.17 If N is arithmetically consistent then we can find within 
it a polynomial p as in Proposition A.16. 0 

Proposition A.lS If N is arithmetically consistent and if P is non-trivial 
then there is arE LN such that N F= per) while N t+ per) and N l+-, 
per)· 

Proof· Put r = ~ + q(xl, ... , xn)v, for q = 1 .! (p+ 1), p as in Proposi­
tion A.16. 0 

Remark A.19 Therefore every nontrivial arithmetical property P in 
theories from arithmetic upwards turns out to be undecidable. 0 

Definition A.20 ~, r E Lr are demonstrably equivalent if and only if 
T I- ~ .. r. 0 

Definition A.21 ~ E Lr is arithmetically expressible if and only if there 
is an arithmetic sentence r such that T I- ~ .. r. D 

Proposition A.22 If T is arithmetically consistent, then for every m E 
w there is a sentence ~ such that M 1= ~ while for no k =:;; n there is a Ek 
sentence in N demonstrably equivalent to ~. 

Proof· The usual proof for N is given in Rogers [28], p. 319. First notice 
that 

OCm+l) = {x :<f>~Cm)(x)} __ 
is recursively enumerable but not recursive in OCm). Therefore, OCm+l) isn't 
recursively enumerable in OCm) , but contains a proper OCm)-recursively 
enumerable set. Let's take a closer look at those sets. 

We first need a lemma: form the theory TCm+l) whos.e axioms are those 
for T plus a denumerably infinite set of statements of the form "110 E 
OCn>," "nl E OCm)," ... , that describe OCm). Then, 

Lemma A.23 If T(n+l) is arithmetically consistent, then ~~(m)(x) ~ if and 
only if TCm+l) I- 3xh ... ,Xn E w p(P(z), < z, ely,O(m) >, Xh ..• ,xJ = O. 

Proof· Similar to the proof in the non-relativized case; see [25], p. 
126 ff. D 
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Therefore we have that the oracle machines cjJ~(m)(x) ~ if and only if 
T(m+l) I- 3xl, '~n E w pcp (z), < z, dy,o(m) >, Xl' ... ,Xn) = O. 

However, since o(m+l) isn't recursively enumerable in o(m) then there 
will ~e an index mo(O(m») = < p(z), < z, dy,O(m) > > such that 

M '"" V Xh ... , Xn [p (roo, Xl, ... , XJ]2 > 0, 
while it cannot be proved neither disproved within T(m+l). It is therefore 
demonstrably equivalent to a IT m+l assertion. D 

Now let q(Ino (o(m»),xh ... ) = p(mo (o(m»), Xh ... ))2 be as in Proposi­
tion A.22. 
Then: 

Corollary A.24 If T is arithmetically consistent, then for: 
(3(m+l) = (J (G (mo(o(n»)), 
G(mo(o(n»)) = J _~OO(C(mo(0(n»),x)e-x2 / (l + C(mo (0 (n») ,x)) dx, 
C(mo(o(n»),x) = Aq(mo(O(n») ,Xl , ... , Xr), 

M "'" (3(m+l) = 0 but for all n ~ m + 1, T<n) H- (3(m+l) = 0 and T(n) H­
'((3(m+l) = 0). D 

Corollary A.25 If T is arithmetically consistent and if Lr contains ex­
pressions for the cjJ(m) functions as given in Proposition A.lS, then for any 
nontrivial predicate P in N there is a rE LT such that the assertion per) 
is T -demonstrably equivalent to and T -arithmetically expressible as a 
~+1 assertion, but not as any assertion with a lower rank in the arith­
metic hierarchy. 

Proof: As in the proof of Proposition A.lS, we write: 
r = ~ + [1 ! (p(mo(om), Xl, ... ,xJ + 1)]v, 

where pC ... ) is as in Proposition A.22. D 

Corollary A.26 If T is arithmetically consistent then, for any nontrivial 
property P there is arE LT such that the assertion per) is arithmetically 
expressible, M '"" per) but only demonstrably equivalent to a IT n+l asser­
tion and not to a lower one in the hierarchy. 

Proof' Put 
r = ~ + {3(m+l)v , where one uses Corollary A.24. D 
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Undecidable sentences outside arithmetic 

We recall: 

Definition A.27 
O(w) = { < x, y > : x E O(Y)} , 

for x, yEw. D 
Then: 

Definition A.28 
<1>(w)(m) = Co(W) (m), 

where cO(w)(m) is obtained as in Proposition A.12. 0 
Still, 

Definition A.29 
O(w + 1) = (O(W») , . 0 

Corollary A.30 O(w+1) is the degree of 0(w+1). 0 
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Corollary A.31 <1>(w+1)(m) is the characteristic function of a nonarithmetic 
subset of w of degree O(w+ 1). 0 

Corollary A.32 If T is arithmetically consistent, then for: 
(3(w+1) = u (G (mo(O(w»)), 
G(mo(O(w»)) = r _:'OO(C(mo(0(W»),x)e- x2 / (l + C(mo(O(w»),x))dx, 
C(mo(O(w»);x) = Aq(mo(O(w»), Xl' ... , xJ, 

M 1= (3(w+1) = 0 butT H-{3(w+1) = 0 and T ~ --, ((3(w+1) =0). 0 

Proposition A.33 (Nonarithmetic incompleteness.) If T is arithmetically 
consistent then given any nontrivial property P: 

1. There is a family of expressio~s rm E Lr such that there is no 
general algorithm to check, for every mEw, whether or not p(r J 
in T. 
2. There is an expression r E LT such that M 1= p(r) while T H­
p(r) and T 1+ --, p(r). 
3. Neither rm nor r are arithmetically expressible. 

Proof· We take: 
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1. rm = xq,(w+l)(m)+ (l_q,(w+l)(m»y. 
2. r = x + y{3(w+l). 
3. Neither cp(w+l)(m) nor (3(w+l) are arithmetically expressible. 0 

Remark A.34 We have thus produced out of every nontrivial predicate 
in T intractable problems that cannot be reduced to arithmetic problems. 
Actually there are infinitely many such problems for every ordinal O!, as 
we ascend the set of infinite ordinals in T. Also, the general nonarith­
metic undecidable statement per) has been obtained without the help of 
any kind of forcing construction. 0 

Finally, let Q(x,al'~'''''~) be a Suppes predicate on the fixed para­
meters ah .... Suppose given an enumeration of the predicates Pk in T. 
Again we suppose that: 

1. For t E LT, T r Q(~J 
2. For ~j, ~j, i ~ j, E ~, T r Pk(~J A --, Pk(~ j)' 
3. Out of that we list all nontrivial predicates P~ that apply to Q­
defined objects. 

Proposition A.35 If T is arithmetically consistent then: 
. Undecidability. There is a countable family rm of expressions for 
Q-objects in T such that there is no general algorithm to decide, for 
any nontrivial Q-property Pk in T whether that expression satisfies 
(or doesn't satisfy) Pk . 
. Incompleteness. There is a Q-object all whose nontrivial Q-proper­
ties cannot be proved within T. D 

Those are our faceless objects. They seem to lie outside the reach of 
forcing techniques, as they are defined with the help of nonstandard 
models. Anyway, incompleteness of the nastiest kind is to be expected 
everywhere in the axiomatized sciences. For density theorems related to 
those intractable. problems see [13]. 
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