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THE INDIRECT PRACTICAL FUNCTIONS 
OF EXPLANATIONS 

Erik Weber* 

1. Introduction 

The view that scientific explanations are instruments by means of which 
we can achieve (epistemic, causal, etc.) understanding of the phenomena 
we observe is widely spread. It was held by e.g. Carl Hempel (1965), 
Michael Friedman (1974), Philip Kitcher (1981) and Wesley Salmon 
(1984). In this volume, it is adopted by Wesley Salmon and Thomas 
Grimes. 

In my opinion, explaining has a theoretical function (creating under­
standing) but also several practical functions. Sometimes we explain in 
order to make a diagnosis or to assign legal responsibility. In these 
situations explaining has a direct practical use. However, I think that the 
search for explanations also has indirect practical functions. The aim of 
this paper is to clarify the nature of these indirect practical functions. 

In section 2 I describe a specific type of explanatory activity, viz. 
scientifically epistemically explaining particular events (from now on I 
will call this activity "SE-explaining"). In section 3 I clarify what the 
indirect practical function of SE-explaining consists in. In section 4 I 
present an outline of how similar indirect practical functions can be found 
for other types of explanatory activity'-

My starting-point in section 3 will be the causal decision theory of 
Brian Skyrms (1984, especially pp. 63-92). Suppose that a1, ... ,aL is a 
series of mutually exclusive and collectively exhaustive actions. Accor-
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ding to Skyrms we have to make a choice between these actions by means 
of the following procedure: 

(SK) (1) Determine the set {kh'" ,km} of potential states of the world 
that will be taken into account; determine the set {c1, ... ,cn} of 
potential consequences that will be taken into account. 
(2) Calculate the expected utility (EU) of each potential action by 
means of the formula 

EU(a) = Ej b(kJ Ej b(cj I a&kJd(a&~&c) 
(3) Perform the action which has the highest EU. 

Ad 1: the elements of {c1, ... ,cn } are potential effects of the actions ah 

... ,aL ; they are mutually exclusive and collectively exhaustive; the states 
of the world (which also are mutually exclusive and collectively exhaus­
tive) are factors that determine to which consequence an action leads; so 
there is a cause-effect relation between the actions and the cj's and bet­
ween the ~'s and the c/s; on the other hand there is no cause-effect 
relation between actions and states of the world, or vice versa. 
Ad 2: b(~) is the belief value the decision maker assigns to state lG; 
b( Cj I a&kJ is the belief value the decision maker is prepared to assign to 
Cj if action a has been performed and he is sure that kj is the real state of 
the world. d(a&~&cj) is a quantitative measure of the desirability of the 
state of the world in which a, lG and cj occur. 

If we apply rule (SK), the amount of utility we really obtain (which 
may differ from the expected utility of the action we have chosen) is 
influenced by the belief values we assign: the "better" the belief values 
are, the better our decisions will be. I will call a set of belief values more 
rational than another (in some situation S) if and only if in this situation 
the first set leads to a more rational choice than the second, L e. to a 
choice that results in more really obtained utility. In section 3 I will show 
that SE-explaining sometimes changes our epistemfc state in such a way 
that in subsequent decision processes we assign more rational belief 
values to states of the world, Le. more rational b(kJ's. Because only 
subsequent decision processes are influenced, this practical function of 
SE-explaining is an indirect one. 



INDIRECT PRACTICAL FUNCTIONS 107 

2. SE-explaining 

2.1 SE-explaining is an epistemic activity in which two main phases can 
be distinguished. In the first phase we construct a scientific epistemic 
explanation problem (SEE-problem); in the second phase we solve the 
problem. In section 2.3 I will clarify what these phases consist in. In 2.2 
I introduce an auxiliary concept, viz. Ea-scientific argument. 

2.2 We start with a definition of arguments in general. An argument 
consists of two singular sentences and one probability statement. Singular 
sentences have the form ·'Object a has property G at time t"; their formal 
representation is G(a,t). Probability statements have the form "In domain 
D holds: the relative frequency of class G in class F equals r" and are 
written as PD(G I F)=r. D is called the domain of the probability state­
ment, G its object class, F its reference class and r its frequency number. 
A probability statement which is necessarily true because of the meaning 
of the terms occurring in it, is called analytic. Arguments are defined as 
follows: 

(ARG) < SbS2'W> is an argument for the singular sentence G(a,t) if 
and only if 
(1) W is a probability statement with object class G which is not 
a theorem of the probability calculus and which is not analytical, 
(2) Sl is a singular sentence in which the property D (the proper­
ty that determines the domain of W) is attributed to (a,t), 
(3) S2 is a singular sentence in which the property F (the proper­
ty that determines the reference class of W) is attributed to (a,t), 
and 
(4) the frequency number of W is not equal to o. 

Whether an argument is Ea -scientific depends on the epistemic status 
of W, 81 and S2' In general, the epistemic status(es) a person assigns to 
a sentence reflect(s) the reasons why he accepts it as true. Two epistemic 
statuses are important here: "empirically founded" and "scientifically 
founded". The content of these statuses is clarified in the subsequent 
paragraphs. 

A person has to give the status empirically founded to a singular 
sentence if and only if his own observations contain sufficient evidence 
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for it or he has good reasons to believe that someone else has gathered 
sufficient observational evidence for it. 

A person has to give the status scientifically founded to a probability 
statement if and only if he knows a proof that this statement is derivable 
from his primary scientific knowledge. The primary scientific knowledge 
of individual X at time t6 consists of all theories, phenomenological laws, 
distribution functions etc. that X regards as empirically adequate at t6. A 
scientific entity (theory, law, etc.) is regarded as empirically adequate if 
and only if it has passed some empirical tests; since we do not need a 
precise concept of empirical adequacy in this article, I do not discuss the 
nature of these tests. 

The knowledge situation of an individual X at t6 is the set of all 
sentences X consciously accepts as true at time t6. Knowledge situations 
are finite and not deductively closed. A description of the epistemic state 
of X at t6 consists of (i) a description of the knowledge situation of X at 
t6, and (ii) a survey of the epistemic statuses which X at t6 assigns to the 
sentences he consciously accepts as true. The epistemic state of X at t6 
will be formally represented by Ex,6. Arbitrary epistemic states will be 
written as Ea. 

We now have all the elements we need to define the concept 
Ea -scientific argument: 

(SA) If < ShS2, W > is an argument for the singular sentence SE, then 
it is Ea-scientific if and only if 
(1) Ea is an epistemic state in which S1 and S2 have the status 
"empirically founded", and 
(2) Ea is an epistemic state in which W has the status "scientif­
ically founded". 

2.3 Consider an individual X and a sentence SE to which X at time t6 

assigns the status "empirically founded". If X compiles a list of all ar­
guments for SE which are Ex,6-scientific, and subsequently gives himself 
the task of changing his epistemic state to the effect that at 1:y (t6 < ty) an 
additional scientific argument for SE emerges (i. e. to the effect that a 
particular argument which did not meet the criteria of (SA) with respect 
to the initial epistemic state Ex 6, and therefore is not on the list, does 
meet the criteria with respect to the new state Ex,'Y)' then X has con­
structed a scientific epistemic explanation problem. 
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Every SEE-problem can be represented by means of a scheme of the 
following form: 

SE 
<Sl,S2,W> 
< Sl' ,S2' ,W' > 
< Sl" ,S2" ,W" >, etc. 

SE is the sentence for which an additional scientific argument has to be 
found, and is called the object sentence of the SEE-problem. The ar­
guments listed in the scheme are the Ex,6-scientific arguments. They 
constitute the reference list of the SEE-problem (which may be empty). 

SE-explaining the particular event described by sentence SE amounts 
to (i) constructing a SEE-problem in which SE is the object sentence, and 
(ii) solving this problem. Solving a SEE-problem amounts to appropri­
ately modifying one's epistemic state and constructing an additional 
scientific argument. I will not discuss the exact procedures by means of 
which SEE-problems can be solvedl. 

3. The indirect practical function of SE-explaining 

3.1 In this section I will show that SE-explaining sometimes changes the 
individual's epistemic state in such a way that in subsequent decision 
processes he assigns more rational belief values to states of the world. 
My argument consists of three lemmas. In each of the sections 3.2-3.4 I 
discuss one of these lemmas. In 3.5 I summarize the argument. In 3.6 I 
compare the indirect practical function I assign to SE-explaining to the 
function Wesley Salmon attributes to explanations in his statistical rele­
vance model. 

3.2 A person assigns the status "scientifically founded" to a probability 
statement if and only if he knows a proof that it is derivable from his 
primary scientific knowledge; the primary scientific knowledge of X at 
time t6 consists of all the scientific entities that X regards as empirically 
adequate at t6 (cf. the definitions in section 2.2). Before I can formulate 
my first lemma, some clarifications about the status "empirically ade­
quate" and about "derivability" have to be made. 
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Assigning the status "empirically adequ~te" to a scientific entity is 
sufficient but not necessary for accepting it. If we accept a scientific 
entity (because we regard it as empirically adequate, or for some other 
reason), we enter into an epistemic commitment: we agree to accept all 
probability statements for which we know a proof that they are derivable 
from the entity. By assigning the status "empirically adequate" to a 
scientific entity, we enter into an additional, more specific epistemic 
commitment: 

(CPM) By giving a scient~fic entity A the status "empirically adequate", 
one agrees to give the status "scientifically founded" to every 
probability statement for which one knows a proof that it is 
derivable from A. 

Assigning the status "scientifically founded" to a probability statement is 
a sufficient reason (but not a necessary one) for accepting it. 

There is no general definition of derivability of probability statements 
from scientific entities: the meaning of derivability depends on the type 
of entity involved or on the entity itself. So we have some type-specific 
definitions of derivability and some entity-specific definitions. To illus­
trate this, we consider the law of the pendulum, P = 2m1l1g. The (type­
specific) definition of derivability for phenomenological laws will tell us 
(i) that from this law we can derive statements of the types P(Pa,b I Lc,J= 
rand P(Lc,d I Pa,b)=r (where Pa,b is a time interval and Lc,d a length 
interval) and (ii) that the value of r (which is 0 or 1) depends on the 
relation between [a, b] and [2 mI cl g, 2 mI dl g] (for statements of the first 
type) or on the relation between [c,d] and [2m1a/g,271"1b/g] (for state­
ments of the second type). 2 

From most entities of our primary scientific knowledge, a large 
(sometimes infinite) number of probability statements is derivable; the 
law of the pendulum illustrates this. But for each entity, each individual 
is acquainted with only a small number of statements for which he knows 
a proof of derivability. So situations in which and individual knows a 
scientific entity (and knows how to derive probability statements from it) 
but is not allowed to assign the status "scientifically founded" to all the 
probability statements that are derivable from it, occur very frequently. 

Let's call the set of all probability statements to which X at fa assigns 
the status "scientifically founded", the effective explanatory knowledge of 
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X at time tn. Furthermore, let a person's potential explanatory knowledge 
consists of all the probability statements that are derivable from elements 
of his primary scientific knowledge (the exact meaning of derivability 
depending on the [type of] entity). These concepts can be used to refor­
mulate the conclusion of the previous paragraph as follows: there is 
always a discrepancy between a person's effective explanatory knowledge 
and his potential explanatory knowledge; the former is only a small 
fraction of the latter. 

A SEE-problem has been solved if and only if our epistemic state is 
appropriately modified and an additional scientific argument has been 
constructed. Let the empirical knowledge of an individual consist of the 
singular sentences to which he has given the status "empirically 
founded". Then the definition of solved SEE-problems entails that an 
enlargement of our empirical knowledge and/or our effective explanatory 
knowledge is necessary in order to solve such problem. Because of the 
discrepancy between potential and effective explanatory knowledge, 
enlarging the latter is often possible without enlarging the former. But on 
the other hand, an appropriate enlargement of the effective explanatory 
knowledge is sometimes impossible within the limits of the current poten­
tial explanatory knowledge of X. So there are SEE-problems which can 
only be solved if X's potential explanatory knowledge enlarged. This 
brings us to the first lemma: 

(L1) SE-explaining sometimes leads to an enlargement of the primary 
scientific knowledge of the person who is involved. 

3.3 My second lemma is an answer to the question "what happens when 
a person's primary scientific knowledge grows?". To answer this ques­
tion, I introduce some new concepts. An object-moment is a couple of an 
object and a point Qf time. A family of properties (or family for short) is 
a series of properties which are defined so that an object-moment cannot 
posses more than one of the properties. When D is a set of object-mo­
ments, the family G1, ... ,Gn is called characteristic of domain D if and 
only if each element of D necessarily possesses one of the properties of 
the family. Probability models are defined as follows: 

(PM) Consider the set D (consisting of all object-moments (x,t) 
such that object x at time t has property D) and two families 
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characteristic of D, F 1, ••• ,F m and G 1, ... ,Gn • A series of 
m x n probability statements 

Po(G l I F1)=Pll 
Po(G l I F2)=P12 

I 
Po(Gl I F~=Plm 
Po(G2 I F 1)=P21 

I 
Po(Gn I F~=Pnm 

is called a probability model for family G1, ••• , Gn in domain 
D if and only if for every Fi holds: Lj Pji = 1 

F l' ... ,F m is the antecedent family of the model, G 1, ... ,Gn its consequens 
family. Finally, X is allowed to call a probability model scientifically 
founded if and only if he has given each of its elements the status "scie­
ntifically founded". 

The probability statements that are derivable from a scientific entity 
can be grouped into probability models. For instance, from the law of the 
pendulum we can derive an infinite number of probability models in 
which the antecedent family is a set of length intervals and the conse­
quens family a set of time intervals. We can also derive an infinite num­
ber of probability models in which the consequens family consists of 
length intervals and the antecedent family of time intervals. Because of 
the relation between scientific entities and probability models, a number 
of probability models is automatically added to a person's potential expla­
natory knowledge if an empirically adequate scientific entity is added to 
his primary scientific knowledge. 

On the other hand, every probability statement that is part of the 
potential explanatory knowledge of a person X, is a statement for which 
X is able to realize the condition he has to realize before he can give this 
statement the status "scientifically founded" (the condition about proof of 
derivability). As a consequence, ali probability models in the potential 
explanatory knowledge of X are models for which he is able to realise the 
conditions (a proof of derivability for each statement) which allow him 
to call it "scientifically founded". This brings us to the second lemma: 

(LJ If the primary scientific· knowledge of person X grows,. the 
number of scientifically founded probability models which X can 



INDIRECT PRACTICAL FUNCTIONS 113 

construct grows too. 

The expression "number of scientifically founded probability models 
which X can construct" is an abbreviation of "number of probability 
models for which X is able to realize the conditions that allow him to 
assign the status 'scientifically founded"'. 

3.4 My first lemma links SE-explaining to growth of a person's primary 
scientific knowledge. The second relates growth of primary scientific 
knowledge to increase of capacity to construct scientifically founded 
probability models. My last lemma links this increase to assigning more 
rational belief values in decision contexts: 

(L3) An increase of the number of scientifically founded probability 
models a person can construct sometimes has the effect that this 
person assigns more rational belief values to the ~'s. 

I will first present two examples (Game I and Game II) and then develop 
an argument in support of this lemma. The examples have two functions: 
they are the starting-point of my argument, and I will use them to clarify 
the meaning of the expression "more rational belief values". In the 
introduction I defined that a set of belief values is more rational than 
another (in some situation S) if and only if in this situation the first set 
leads to a more rational choice, Le. a choice that results in more really 
obtained utility. I will use the examples to clarify this definition. 

Game I has the following set-up. An urn contains 35 green cubes, 5 
green balls, 15 yellow cubes and 45 yellow balls. The candidate, who is 
blindfolded, only knows that the urn contains 40 green objects and 60 
yellow ones, and that the objects are either balls or cubes. On the left of 
the urn is a green box, on the right is a yellow one. The games master 
takes an object out of the urn, and th~ candidate decides in which box 
this object is laid. If the games master puts a green object in the green 
box or a yellow one in the yellow box, the candidate receives 10$. For 
an object that is posed in the wrong box, the candidate receives nothing 
(but looses nothing either). 

What does the decision process in game I look like if the candidate 
follows procedure (SK)? He has to choose between two actions: 



114 ERIK WEBER 

al: Instruct the games master to put the object in the green box. 
~: Instruct the games master to put the object in the yellow box. 

The first move of the candidate will consist in constructing a model of the 
decision context (step 1 of (SK)). The simplest model that takes all rele­
vant causal relations into account consists of four consequences and two 
states: 

cl: a green object in the green box 
c2: a yellow object in the green box 
c3: a green object in the yellow box 
c4: a yellow object in the yellow box 

kl: the object the games master has chosen is green 
k2: the object the games master has chosen is yellow 

Having constructed this model, the candidate starts calculating the ex­
pected utilities of the two actions (step 2 of (SK)). Because of the set-up 
of the game it is rational to assign the following belief values: 

b(cj I al&kl) is 1 if j = 1 and 0 otherwise 
b(cj I al&kJ is 1 if j =2 and 0 otherwise 
b(cj I a2&kl) is 1 if j = 3 and 0 otherwise 
b( cj I ~&kJ is 1 if j = 4 and 0 otherwise 

As a consequence, the formulas for calculating the expected utility of the 
actions can be reduced to: 

EU(al) = [b(klxlxd(al&kl&cl)] + [b(k2)xlxd(al&k2&c2)] 
EU(aJ = [~(klxlxd(~&kl&c3)] + [b(kJxlxd~~&k2&c4)] 

In view of the money that can be won, d(al&kl&cl) = d(a2&k2&c4) = 10 
and d(a l &k2&c2) = d(~&kl&C3) = 0 are rational desirabilities. So the 
formulas can be reduced to: 

EU(al ) = [b(kl)xlxl0] + [b(k2)xlxO] 
EU(aJ. ='Jb(ki)xl~O] .. + [b(kz)xlxlO]., 
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To complete step 2 of procedure (SK) the candidate has to assign a belief 
value to kl and k2 • This can be done in many different ways. I will 
discuss only one procedure, which I call the method of true probability 
models (TPM -method). 

Let U be the set of objects in the urn, G the set of green objects and 
Y the set of yellow objects. Then G,Y is a family of predicates which is 
characteristic of U. Moreover, this family can be used to represent the 
states kl and k2 : if the object of action (the object the games master 
selects) is called e, state kl can be written as Ge and state k2 as Yeo The 
TPM,method goes as follows: 

(TPM) (1) Choose a family Kb ... ,Km which is characteristic of D and 
by which the states kb ... km can be represented. 
(2) Compile a list of all probability models for Kl , ... ,Km in D 
that satisfy the following conditions: 
(a) you have empirical evidence which enables you to deter­

mine to which cell of the antecedent family the object of 
action belongs, and 

(b) your knowledge of the decision context implies the truth of 
all probability statements of the model. 

(3) Select one of the models on the list obtained in step 2. 
(4) Equate b(kJ to P(Ki I F J 

Ad 1: D is the set of potential objects of action (in our example: the 
set U) 
Ad 4: Fa is the cell of the antecedent family to which the object of action 
belongs; Ki is the element of the consequens family that is used to repre­
sent ~. 

The set-up of game I implies that there is only one probability model 
that satisfies the conditions (2a) and (2b): 

(Pl) Pu(G)=O.4 
Pu(Y)=O.6 

So if the candidate uses the TPM-method to assign belief values, his final 
result will be: 

EU(a l ) = 0.4x10 = 4 



116 ERIK WEBER 

EU(aJ = 0.6x10 = 6 

As the expected utility of ~ is higher than the expected utility of ai' the 
candidate will tell the games master to put the object in the yellow box. 

Game II is a variant of game I. There are only two differences. 
Firstly, the candidate not only knows that the urn contains 40 green 
objects and 60 yellow ones, but also that there are 50 balls and 50 cubes, 
that 70 % of the cubes are green, and that 90 % of the balls are yellow. 
Secondly, he can buy information about the shape of the object the games 
master has chosen: if the candidate pays 1$, the games master tells him 
whether it is a ball or a cube. 

Until the moment when the belief values of the states of the world 
are fixed, the decision process in game II is identical to that in game I; 
so like in game I, the formulas for calculating the expected utility of the 
actions can be reduced to: 

EU(a1) = [b(kl)x1x10] + [b(k2)x1xO] 
EU(aJ = [b(k1)x1xO] + [b(k~x1x10] 

However, the conditions of the second step of (TPM) no longer exclude 
all probability models other than (Pi). If the candidate does not buy 
information about the shape of the object, the only adequate probability 
model is (Pi). But if he buys the information, the list which is obtained 
at the end of step 2 of (TPM) contains a second probability model, viz. 

(P~ Pu(G I C)=0.7 
Pu(Y I C)=0.3 
Pu(G I B)=0.1 
Pu(Y I B)=0.9 

where C is the set of cubes and B the set of balls. 
If the candidate uses the TPM-method to determine the belief values 

of kl and k2' he has to choose between three options: 

0 1: Do not buy the information about the shape of the object, and 
use probability model Pi to assign the belief values. 

O2: Buy the information about the shape of the object, and use 
probability model Pi to assign the belief values. 
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0 3 : Buy the information about the shape of the object, and use 
probability model P2 to assign the belief values. 

Each option is a combination of two metadecisions. The second metadeci­
sion constitutes the third step of (TPM). 

If the candidate chooses the first or second option, the belief values 
are the same as in game I; so he will choose action ~. If he chooses 
option 3, he will choose al if the games master tells him that the object 
of action is a cube, and ~ if he tells him that it is a ball. For a cube, the 
expected utilities are: 

EU(al ) = [0.7xlxl0] + [O.3xlxO] = 7 
EU(aJ = [0.7xlxO] + [O.3xlxl0] = 3 

For a ball, the expected utilities are: 

EU(al ) = [O.lxlxl0] + [O.9xlxO] = 1 
EU(aJ = [O.lxlxO] + [O.9xlxl0] = 9 

As announced at the beginning of this section I will use these ex­
amples to clarify my definition of "more rational belief values". Let the 
net degree of rationality of a decision be its gross degree of rationality 
minus the cost of the information one has collected in order make the 
decision; and let the gross degree of rationality of a decision be the 
average utility one obtains if the same decision is made (in the same 
context) an infinite number of times. Then we can formulate the defini­
tion of "more rational belief values" in a different way: a set of belief 
values is more rational (in situation S) than another if and only if in this 
situation the first set leads to a decision with a higher net degree of 
rationality. 

To illustrate this new definition, we consider the three options in 
game II. If the candidate chooses the first option and then decides to 
perform action ~, the gross degree of rationality of this latter decision is 
6; as he did not buy any information, the net degree of rationality is 
equal to the gross degree. If the candidate chooses the second option, the 
gross degree of rationality is 6, while the net degree is 5 (the price of the 
information is 1$). Finally, the gross degree of rationality given the third 
option is 8 «0.Sx7) + (O.Sx9); I assume that in the long run the number 
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of balls the games master selects is equal to the number of cubes he 
selects), while the net degree is 7. 

The second function of the examples is to provide a starting-point for 
an argument in support of my third lemma. To see what we can learn 
from them, I start with a very bold generalization: 

(L3,J The belief values assigned to states of the world by means of the 
TPM-method become more rational if the number of true proba­
bility models the decision maker knows increases. 

This claim is supported by the examples: in game II there are two true 
probability models, while in game I there is only one. If the candidate 
makes the right metadecisions (i.e. chooses option 3) the additional 
probability model will cause the candidate to assign belief values that lead 
to a decision with a higher net degree of rationality than can be reached 
in game I: the net degree of rationality if he chooses option 3 is 7, while 
the net degree of rationality in game I equals 6. 

Though (L3J is supported by the examples, it is easy to find reasons 
why it is false: 
(1) The decision maker may make inappropriate metadecisions (this 
problem occurs in the examples if the candidate chooses option 1 or 2). 
(2) The cost of information acquisition may exceed the increase in gross 
degree of rationality of the decision (this problem would occur in the 
examples if the candidate would have to pay more than 3$ for informa­
tion about the shape of the object). 
(3) Sometimes the information we need to apply a probability model can 
not be obtained (this problem would occur in the examples if we would 
assume that the candidate can not buy information about the shape of the 
object). 
(4) True probability models can only lead to more rational belief values 
if they are used in a decision process. 

Because (L3,J is false, the starting-point of my argument for the third 
lemma is a weaker claim: 

(L3B) The belief values assigned to states of the world by means of the 
TPM-method sometimes become more rational if the number of 
true probability models the decision maker knows increases. 
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Though ~B) is acceptable, it is not immediately relevant for (L3): it does 
not say anything about scientifically founded probability models. To 
overcome this problem, we have to make an assumption about the ef­
ficacy of scientific method. According to the definitions of section 2.2, 
a person has to give the status "scientifically founded" to a probability 
statement if and only if he knows a proof that this statement is derivable 
from his primary scientific knowledge. The primary scientific knowledge 
of individual X at time tn consists of all scientific entities that X regards 
as empirically adequate at tn. An entity is regarded as empirically ade­
quate if and only if it has passed some empirical tests. If we assume that 
these empirical tests, together with the conditions that govern the statuses 
"scientifically founded" and "empirically adequate", guarantee that every 
scientifically probability model is approximately true, then (L3B) entails 
(L3d: 

(L3C) The belief values assigned to states of the world by means of the 
SFPM-method sometimes become more rational if the number of 
scientifically founded probability models the decision maker has 
at his disposal increases. 

The SFPM-method (the method of scientifically founded probability 
models) is an extension of the TPM-method: 

(SFPM) (1) Choose a family K1, ••• ,Km which is characteristic of D 
and by which the states k1, .•• km can be represented. 
(2) Compile a list of all probability models for Kl' ... '~ in 
D that satisfy the following conditions: 
(a) you have empirical evidence which enables you to 

determine to which cell of the antecedent family 
. the object of action belongs, an~ 

(b) your knowledge of the decision context implies the 
truth of all probability statements of the model, or 
the model consists of scientifically founded proba­
bility statements. 

(3) Select one of the models on the list obtained in step 2. 
(4) Equate b(kJ to P(Ki I F J 

Unless we hold that the SFPM-method is never used to make decisions, 
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3.5 If we combine the first and second lemma, we can conclude that SE­
expl~ining sometimes leads to an enlargement of the number of scien­
tifically founded probability models the individual can construct. Com­
bining this conclusion with the third lemma results in the following claim: 

(IPF) SE-explaining sometimes changes the epistemic state of X in a 
way that affects his subsequent decisions: the epistemic state of 
X sometimes changes in such a way that in subsequent decision 
processes he assigns more rational belief values to states of the 
world. 

(IPF) states that SE-explaining sometimes has a practical benefit: this 
activity sometimes improves our subsequent decisions. In the situations 
we have discussed SE-explaining is not part of a decision process, only 
the subsequent decisions of the individual are affected. So the potential 
practical benefit we have discussed constitutes an indirect practical func­
tion of SE-explaining. 

3.6 The indirect practical function of SE-explaining described in 3.2-3.5 
resembles the function Wesley Salmon assigns to explanations in his SR­
model (W. Salmon 1971, pp. 76-78). On the SR-model, an explanation 
of the fact that object a, which is a member of D, is also a member of G 
has the following form: 

Po(G I F1)=Pl 
Po(G I F:J=P2 

I 
Po(G I Fm)=Pm 
a is a member of D&Fk 

The probability statements must satisfy two conditions: (i) D&F1, D&F2, 
... , D&F m is a partition of D which is homogeneous with respect to G, 
and (ii) Pi=Pj only if i=j. 

Suppose we explain why a, a member of D, has property G. After­
wards we want to assign a belief value to the sentence "b has property 
G". b is· also a member of D. Then we can use the set of probability 
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statements in the explanation to assign this belief value: we determine to 
which cell of the partition b belongs and then take the frequency number 
of the corresponding probability statement as belief value. In general, 
Salmon .claims, constructing a SR-explanation is useful because the set of 
probability statements which an explanation contains constitutes an ade­
quate basis for assigning rational belief values to sentences of the form 
"x has property G" and "x does not have property G" (x is an element 
of D for which there is no observational evidence that allows us to decide 
between G and not-G). Salmon calls the belief values we obtain this way 
rational because they are based on a homogeneous partition of D. In his 
view, making a rational decision requires rational belief values. 

The function of SE-explaining I have described in 3.2-3.5 and the 
function Salmon attributes to constructing SR-explanations are based on 
the same intuition: by constructing explanations, it is possible to change 
our epistemic state in such a way that our subsequent decisions become 
more rational. The most crucial differences between Salmon's elaboration 
of this idea and mine are: 
(1) Contrary to Salmon, I regard explanations as arguments (my defini­
tion of "Ea-scientific argument" may be seen as my explicatum of "epi­
stemic explanation"). I do not have to claim that an explanation contains 
more than one probability statement because the indirect practical effect 
of SE-explaining is mediated by an increase of the individual's primary 
scientific knowledge. 
(2) I have taken into account the cost of information; by identifying 
rational belief values with belief values based on a homogeneous par­
tition, Salmon neglects the fact that using a non-homogeneous partition 
may be more rational (because much cheaper) than using a homogeneous 
partition. 

4. The indirect practical junction of ot~er types of explaining 

I have established that SE-explaining has an indirect practical function. 
I think that non-epistemic types of explaining (causal, functional, rational) 
also have indirect practical functions, and that the nature of these func­
tions can be specified in a way that is similar to the one followed in 
section 3. I will use causal explaining to clarify my view. 

To define SE-explaining, I introduced the concept "Ea -scientific 
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argument", which may be regarded as my explicatum of "epistemic 
explanation" . In the definition of "Ea -scientific argument", the structural 
conditions of (ARG) are combined with epistemological conditions in 
which is referred to epistemic statuses. In order to specify the indirect 
practical function of causal explaining, we have to develop an explicatum 
of "causal explanation" which has the same characteristics, i.e. an expli­
catum that combines structural conditions with requirements about epis­
temic statuses. Let's consider the following proposal: 

(CE) A causal explanation is a list of statements about singular causal 
relations between the members of a set of explanans events and 
an explanandum event; these statements must have a specific 
epistemic status indicating that they have been derived from 
general causal statements (statements about causal capacities) 
which are backed up by statistical evidence. 

On this definition, constructing a causal explanation sometimes requires 
an enlargement of the number of general causal statements to which the 
individual can assign the status indicating that the statement is backed up 
by statistical evidence. Such an enlargement can influence the subsequent 
decisions of the individual: the outcome of step 1 of (SK) depends on the 
general causal beliefs of the decision maker. 

5. Concluding Remarks 

The search for explanations has a theoretical direct function (understand­
ing) and several practical direct functions (e.g. diagnosis). These direct 
functions of explaining were not discussed in this paper. Instead I have 
shown that SE-explaining has an indirect practical function, and suggested 
that other types of explaining have similar functions. In this final section 
I will discuss two questions that are raised by my claim (IPF), viz. (1) 
does the indirect practical function of SE-explaining make this activity 
worthwhile irrespective of other potential (practical or theoretical) bene­
fits, and (2) can SE-explaining lead to more rational b(cj I a&kYs? 

With respect to the first question two positions can be taken. The 
first position is that we must not construct and solve SEE-problems unless 
we want epistemic understanding of an event or this activity has some 



INDIRECT PRACTICAL FUNCTIONS 123 

direct practical use. The second position is that SE-explaining is worth­
while even if there are no direct (theoretical or practical) benefits. 

One can defend the first position by means of the following argu­
ment. Most SEE-problems can be solved without enlarging the individu­
ai's primary scientific knowledge; so the effect described in (Ll ) occurs 
only in a few cases. The same holds for the effect described in ~), 
because the SFPM-method is hardly used and because most of the proba­
bility models we acquire by SE-explaining never become relevant for 
making a decision. As a consequence, situations in which a decision 
making individual benefits from a probability model he has acquired by 
means of SE-explaining, are rare. Therefore, the indirect practical func­
tion of SE-explaining is not strong enough to justify the efforts we have 
to make in order to construct and solve a SEE-problem. However, if a 
person constructs and solves a SEE-problem in order to understand a 
phenomenon or to make a diagnosis, and this activity improves one of his 
subsequent decisions, this is a valuable side-effect. 

The second position can be defended by inverting the argument for 
the first position: one claims that only a few SEE-problems can be solved 
without enlargement of primary scientific knowledge, that the SFPM­
method is frequently used, etc. 

Can SE-explaining cause an individual to choose more rational values 
for the b(cj I a&kJ's? Yes, but there is an additional restriction. Since a 
and ~ are always causes of cj ' the quality of the b(cj I a&k)'s can only 
improve if there is an enlargement of primary scientific knowledge which 
increases the number of causal probability models in the individual's 
potential explanatory knowledge (the distinctive feature of causal proba­
bility models is that the properties of the antecedent family are causally 
relevant for the properties in the consequens family). 

Universiteit Gent 

NOTES 

1. See E. Weber (1993) for an account of how phenomenological laws 
can be used to solve SEE-problems. 

2. Derivability of probability statements from phenomenological laws 
is extensively discussed in E. Weber (1993). 
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