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THE CONNECTIONIST MODEL QNET AND ITS 
COMBINATION WITH GENETIC ALGORITHMS 

Philip Van Loocke 

ABSTRACT 

This paper starts with an exposition of a new connectionist model. The model genemlizes 
more classical fully connected symrr:tetric networks. One of its main characteristics is that 
the state of a unit is characterized by a vector of amplitudes rather than by a single scalar . 

. activation value. The rules that express the evolution of the amplitudes of a particular unit 
are expressed. in terms of the amplitudes of the other units. The chance to observe a par
ticular unit as being active in a particular frequency, however, is proportional with the 
square of the corresponding amplitude. Because of this as well as some other parallels with 
quantum theory, the model has been called QNET. QNET operates in different frequencies 
at once, and the operations in different frequencies interact with each other in a way that 
is desimble from a cognitive point of view. For instance, when confronted with a problem, 
QNET can find different solutions in differen~ frequencies. When different solutions are 
found, this often indicates that more classical networks fail to find a solution at all, since 
they then converge to a spurious mixture of solutions. We go on to consider how this type 
of network can be combined with genetic algorithms. We point out that a combination· of 
both methods leads to a technique that integrates the benefits of genetic algorithms with the 
ones of neural networks. . 

1. Introduction 

About a decade ago, symmetric neural nets like the schema model were 
introduced in order to explain how sub conceptual units generate cognitive 
processes (Rumelhart et al., 1986).1 Meanwhile, this model and related 
Hopfield-type models have been applied successfully to pattern recog
nition problems, and to various problems in which large numbers of soft 
constraints have to be fulfilled. Other types of symmetric neural nets, like 
the Boltzmann net, have been used for non-supervised learning. When-
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ever a network has symmetric connections, it can be -characterized by an 
energy function. An asynchronous updating rule always leads to a local 
or global minimal value of this function. Depending on the nature of the 
problem that is solved, a global minimal value corresponds to a pattern 
that is recognized, to a solution for a soft constraint problem, to a trajec
tory for a Travelling Salesman Problem, and so on. The QNET -method 
can fruitfully be applied to all these cases; the only condition that must 
be satisfied is that a problem can be solved by a network with symmetric 
connections. 

The structure of this paper is as follows. In section 2, we describe 
the units of QNET and we specify how they perform their update opera
tions. Section 3 explains the basic properties of QNET. For instance, we 
show that a single distributed input pattern can lead to a retrieval of 
different relevant memory patterns in different frequencies. This happens 
often in cases where a Hopfield-model would converge to a spurious 
mixture of solutions. Section 4 contains another illustration of these 
properties. It makes use of a network in which a simple set of distributed 
sentences is stored. In section 5, we go on to describe how QNET can be 
integrated with a genetic algorithm approach. 

2. The units and the updating rule of QNET 

In QNET, every unit has a state that is characterized by a vector rather 
than by a single activation value. We will denote the state vector of a unit 
i as (a/, .... , a/, ... aj

k
). The quantity a/ is called the amplitude of the 

i-th unit in the f-th frequency. Every unit i of the network is initialized 
in such a way that the sum of its squared amplitudes equals one: 
(a j

1)2+ ... + (Cljk)2= 1. 
The updating rule of QNET is randomly asynchronous. At every 

. time step t, one unit i is chosen to update its amplitudes. Consider a unit 
j that sends communication to i. Then, the update procedure contains 
three steps: 

i. In unit j, a single frequency f is selected. This frequency is se
lected with a probability equal to (a/)2. 

ii. The information that is sent by j is the quantity a/-nl, where nl is 
a system parameter. This quantity is weighted by the connection Wjj from 
j to i. Unit i adds this quantity to its previous amplitude in the f-th fre-
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quency and may add a bias: 

f:.a( =wjj(a! -nl) +lJ.bj 
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This operation is repeated for all units j that communicate to i. After the 
contributions from all units j have been included, a simple non-linear 
operation is applied in unit i. This operation ensures that amplitudes 
saturate for large positive values and that they do not become negative: 
if a/> sat then a/=sat 
if a/ < 0 then a/=O 
The parameter sat is a system parameter. 

iii. After ii. took place, the amplitudes in unit i are normalized. 
More specifically, every amplitude is multiplied by a factor 
«ajl)2+ ... + (aj~2+ ... + (ajk)2) (-112). 

The normalization in step (iii) guarantees that the probabilistic rule 
in (i) remains meaningful. Rules (i) and (ii) can be read as follows: the 
chance that unit j is observed in frequency f is proportional with the 
square of the amplitude of j in f. The magnitudes of the changes in 
amplitudes in i, however, are governed by the non-squared amplitudes in 
j. This principle has an obvious analogy in quantum theory. For instance, 
in case of a quantum oscillator, the terminology can be literary main
tained: the probability to observe a quantum oscillator in a particular 
frequency is proportional to the square of the amplitude of this frequency 
in the decomposition of the state vector. The equations that govern the 
interactions between oscillators, however, do not contain probabilities but 
amplitudes. l The-analogy between QNET and elementary quantum theory 
is amplified by the fact that, in QNET, a discrete (and finite) number of 
quantities is associated with every unit. Also in quantum theory, the state 
of a system is typically composed of a non-continuous, discrete spectre 
of pure states (on condition that the quantum system is localized in a 

_ finite space). 

3. Properties of QNET 

The properties of QNET can be explained most clearly if we differentiate 
between three types of initial amplitude patterns. Suppose that we give 
input-information in the first q frequencies, with q < k . This means that 
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q amplitude patterns are defined for the input units of the network. We 
notice that the normalization condition requires that input units that have 
amplitude zero in the first q frequencies receive at least some nonzero 
amplitudes. For such units, we put the initial amplitude in every frequen
cy larger than q equal to nl= (l/k_q)C1I2). 
Suppose that a unit is 'hidden'. In case of QNET, this means that none 
of the first q amplitude patterns attributes a value to this unit. Then, it is 
initialized with amplitude (l/k)(1/2) in all frequencies. The system para
meter nl that appears in step ii of the updating rule is put equal to this 
value. Then, nl is a noise parameter: it is a residual amplitude in every 
frequency of a unit that does not represent information. 

U nits are allowed to have amplitUdes in k frequencies. For some 
processes, it is useful to confine the communication between the units to 
~ff frequencies, with keff < k. This means that, whenever a unit sends 
communication in a frequency between ~ff and k, this information is 
ignored by the receiving unit. 

With these preliminaries, we differentiate between three types of 
input. 
(1) The input information is presented in a single frequency f only. 

Without loss of generality, we can assume that f is the first frequen
cy. If the initial amplitude pattern in the first frequency is binary, then 
units that are active in the first amplitude pattern have amplitude zero in 
the other frequencies. Units that are n9t active in the first frequency have 
amplitude (1 Ik -1 )(1/2) in the remaining k -1 frequencies. 

In the illustrations of the present section, we use a network with 225' 
units which are organized in a i5x15 matrix. We store 10 patterns in the 
network. For ease of visualization, the three first patterns are the ones of 
Figure 1. The next seven patterns are random patterns with a mean 
activity of 1/2. The connections in the network are put in accordance with 
the pseudo-Hebbian Hopfield rule. If we denote the activity of the p-th 
memorized pattern in unit i Vt, this rule prescribes that the connection 
wij between unit i and unit j is given by wij= e.Sp(2Vt-l)(2Vt-l). The 
value of k is put to 15. 
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Figure 1. The tlrree first patterns memorized by a network with 225 units. 

Figure 2 The activation pattern of the schema model after 0, 75 and 450 
updatings. 
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When keff = 1, the present type of input pattern reduces QNET to a 
Hopfield·model. Suppose that the first pattern in Figure 1 is distorted 75 
successive times. At every distortion, the activation of one randomly 
chosen unit is replaced by its opposite. If the resulting pattern is pre
sented to QNET, then the first pattern is retrieved after 450 updatings 
(Figure 2; for ease of visualization, we adapted the random generator in 
such a way that every unit was selected for an update during a cycle of 
225 updatings). 

In Figure 3, we show a run of a QNET with keff=2. As Figure 3 
shows, although the information is presented in the first frequ.ency only, 
a pattern starts to form in the second frequency. After about 450 updates, 
it becomes clear that this pattern is the mirror image of the pattern that 
is retrieved in the first frequency. 

In order to explain this, we notice that the mirror image of every 
memorized pattern is also an attractor of the Hopfield model (Amit et al., 
1985). During the first updates, the second frequency is occupied by 
small fluctuations only. If a unit j sends communication to another unit 
i, and if this communication concerns the second frequency, then the 
quantity that is communicated is relatively small due to the appearance of 
nl in step (ii) of the updating procedure. Due to the normalization, fluc
tuations in the second frequency that would support the first pattern have 
no chance to persist. Fluctuations that favour the mirror image, on the 
other hand, are allowed to grow until the mirror-attractor is reached. 

QNET with keff=2 appears to have slightly larger bassins of attrac
tion when compared to the Hopfield model. This effect is strengthened 
significantly when a different type of input presentation is used. Suppose 
that frequency 1 is initialized like in Figure 3, but that the second fre
quency receives as input the mirror image of this amplitude pattern 
(Figure 4). Then, QNET still recovers the memorized pattern after 133 
distortion&, whereas the Hopfield model recovers the pattern for 96 
distortions maximally, compared with 102 for QNET with initial infor
mation in a single frequency. The reason for the increase of the basin of 
attraction is that, from the onset, the second frequency can cooperate with 
the first one. When the amplitudes in the second frequency approach the 
mirror image of the first stored pattern, the normalization condition 
stimulates the amplitudes in the first frequency to converge to the first 
stored pattern, and vice versa. 
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(2) An identical input pattern is shown in q frequencies, with q> 1. In 
this situation, the updating process may lead to two types of outcomes. 
First, a single pattern that is compatible with the input may be found in 
one or more frequencies. Second, if different patterns are compatible with 
the input, they will be retrieved in different frequencies. At this instance, 
we notice that the system parameter sat can be used to encourage re
trieval of different patterns 'in different frequencies. Consider a frequency 
in which no attractor has been found yet, and suppose that a particular 
unit has a significantly positive amplitude in this frequency. Suppose that 
the same unit also participates in an attractor that has become realized in· 
another frequency. In the latter frequency, this unit will in general ex
perience stronger support than in the former one. However, if sat is not 
too high, it follows from s'tep (ii) in the updating rule that the unit can 
remain active in the former frequency too, in spite of the normalization 
process. Hence, the search process in the former frequency can go on, 
also when an attractor has already been found in the latter one (in the 
illustrations that are described in the present paper, the value of sat has 

. been put equal to 1). 
We start with an illustration in which QNET finds a single solution 

only for an input of type (2) .. Consider the first memorized pattern, and 
suppose that it is distorted fifteen times. We put q=3, which means that 
the pattern is presented in three. frequencies. If a unit is active in the 
distorted version of the first memorized pattern, then it is initialized with 
an amplitude (113)(1/2) =0.58 in the first three frequencies. For k= 15, a 
ul1it that is not active in the distorted pattern is initialized with an ampli
tude (1112)(1/2) =0.29 in the twelve remaining frequencies. 

Figure 5 shows the evolution of the amplitudes in the first four 
frequencies. We observe that, in all three frequencies in which infor
mation was given, the memorized pattern is retrieved. Notice that in the 
fourth frequency, the mirror image of the memorized pattern is retrieved. 
Due to the normalization condition, this fact enhances the stability of the 
patterns in the first three frequencies. ' 
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Figure 5. Presentation of a pattern with 15 random distortions in three 
frequencies. The upper figures show the amplitude patterns after 0 updates in 
the first, the second, the third and the fourth frequency. The middle figures 
show the same amplitude patterns after 450 updates; the bottom line shows the 
amplitudes after 2250 updatings. 

Figui-e 6. Presentation of a pattern with 45 random distortions in three 
frequencies. The middle figures show the same amplitude patterns after 450 
updates; the bottom line shows the amplitudes after 2250 updatings. 

115 
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Figure 6 shows what happens for an input pattern that was distorted 
45 times. This time, the two first frequencies succeed in retrieving the 
memorized pattern, but the fluctuations that are inherent in the random 
updating process draw the pattern in the third frequency away from the 
first memorized pattern. After 2250 updatings, when the pattern has been 
retrieved in the first two frequencies, the third frequency has not reached 
stability yet. In this sense, nothing is retrieved in this frequency. When 
the input pattern is subject to 75 random distortions, the first pattern is 
retrieved in a single frequency only; the second and the third frequency 
do not reach stability· after 2250 updates. 

Next, we consider a more interesting situation. Consider a pattern 
that overlaps with the two . first memorized patterns. Such a pattern can 
be obtained, for instance, when one takes the units that are active in both 
patterns. We present the resulting pattern to QNET in the first three 
frequencies. Again, we put k= 15, so that a unit that does not receive 
input information has an initial amplitude (1/12)(1/2) in the remaining 
twelve frequencies. The network run that is illustrated in Figure 7 was 
made for ~ff=6. Figure 7 shows that QNET retrieves the first memorized 
pattern in frequencies 1 and 3, whereas the second memorized pattern is 
retrieved in frequency 2. The amplitudes in the fourth frequency converge 
to the mirror image of the first pattern. The amplitudes in the fifth fre
quency do not reach stability after 2250 updates, and the ones of the sixth 
frequency become extinct. 

The capacity to retrieve different solutions in different frequencies 
differentiates QNET from other models, which often lead to spurious 
mixtures of different low energy patterns in comparable input situations 
2 (we verified· that, if the present initial amplitude patterns are used to 
define an initial pattern of activation, the Hopfield model converges to a 
·stable spurious state). 3 
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. Figure 7. The amplitudes in the first six frequencies are shown after 0, 450 and 
2250 updates (in every series of six amplitude patterns, the amplitude patterns 
1 to 3 depicted from left to right on the first row; pattern 4 to 6 can be seen on 
the lower row. 

117 
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Figure 8. 1he amplitudes in the first six frequencies are shown after 0, 450 and 
2250 updates (in every series of six amplitude patterns, the amplitude patterns 
1 to 3 depicted from left to right on the first row; pattern 4 to 6 can be seen on 
the lower row. 
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(3) Different initial amplitude patterns are presented to differentfrequen
des. 

Suppose that the initial amplitude-patterns in different frequencies 
correspond to noisy versions of different memorized patterns. Then, as 
a result of the updating operations., these patterns will be retrieved in the 
respective frequencies. For instance, suppose that the first three memo
rized patterns of the present example are distorted 75 times each, and that 
the resulting patterns are presented to the first three frequencies. In order 
to increase the basin of attraction of the memorized patterns, we present 
in the fourth, the fifth and the sixth frequency the mirror images of these· 
patterns (Figure 8). For this initialization, every unit has a strictly posi
tive amplitude in exactly three frequencies. Hence, all strictly positive 
amplitudes are given the value (1/3)(1/2). We put keff=k=6. Figure 8 
shows the amplitude patterns in six frequencies after 0, 450 and 2250 
updates. We observe that the first three patterns as well as their mirror 
images are retrieved. 

This property entails that, although QNET is a single distributed 
network with a single connection matrix, it can act like different schema
models that run in parallel. However, as has' been illustrated, processes 
in different frequencies are not independent. For instance, they encourage 
each other to converge to a low-energy attractor instead of to a spurious 
state. 

4 .. Another illustration of QNET. 

As a second illustration of QNET, we consider a simple set of sentences. 
We represent sentences in a format that is familiar from particular con
nectionist approaches to the variable binding problem (Shastri & 
Ajjanagadde, 1993). In this format, a verb or a relation is represented by 
a number of units that equals its number of arguments. For instance, 'to 
give' has three arguments: a subject, a receiver and an object; 'to wear' 
has two arguments, and so on. Consider the following four sentences that 
relate to what has happened on Mary's party: 
1. John gives a red rose to Mary 
2. Jim gives an expensive book to Mary 
3. Bill gives delicious champaign to Mary 
4. Lucy wears a white dress 
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Jlm,1 Jlm,2 8111,1 8111,2 Mary,1 Mary,2 John,1 John,2 

00 

LucY,1 Lucy,2 red rose book expensive champaign white 

8 G G B B G @ @ 

give: give: give: wear: wear: 

dress delicious subject receiver object subject object 

G @ G G 0 @ @ 

Figure 9. The units that participate in the represen~tion of the example 
sentences. 
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Figure 10. Summed square differences between the values of the fourth sentence 
and the first five amplitude patterns. 
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Figure 11. Summed square differences between the values of the tirst sentence 
and the first four amplitude patterns (Figure lla); the same quantities but for 
the second and the third sentence are shown in Fip;ure 11b and Figure llc. 
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We numbe.r units as indicated in Figure 9. Then, the four sentences can 
be mapped on the following sets of units: 
1: 5, 6 7, 8, 11, 12, 19, 20, 21 
2: 3, 4, 5, 6, 13, 14, 19, 20, 21 
3: 1, 2, 5, 6, 15, 18, 19, 20, 21 . 
4: 9, 10, 16, 17, 22, 23 

. We notice that we associated· two units with a person. In this way, 
we obtain representations that are slightly more distributed. As a conse
quence, we can keep using the pseudo-Hebbian Hopfield rule to store 
sentences 1-4 in a network with 23 units (with representations that are 
more local, the number of memorized patterns in proportion to the total 
number of units becomes too high for the Hopfield rule, and we should 
use the projection rule .instead). Suppose now that we ask the QNET
network what Lucy was wearing. The basic procedure is familiar from 
the schema-model (Rumelhact, Smolensky et aI., 1986): we clamp the 
units 'Lucy' (units 9 and 10), 'to wear: subject' (unit 22) and 'to wear: 
object' (unit 23), and we wait and see if the network turns on any other 
unit. In the run that is illustrated, we clamped units 9, 10, 22 and 23 with 
amplitude (114)(1/2) in the first four frequencies. Other units were initial
ized with amplitude zero in these frequencies, and amplitudes (l/11) (112) 

in the remaining eleven frequencies (we put k= 15 and ~rr=5). 
In every unit, we calculated the squared differences between the 

amplitudes in the five first frequencies and the value of the four senten
ces. These quantities were summed over all units. The resulting five 
quantities for sentence 4 are plotted in Figure 10. Every step on the 
horizontal axis of figure 10 corresponds with 23 successive random 
updatings. As can be seen in Figure 10, sentence 4 becomes realized in 
both the third and the fourth frequency. 3 

Next, suppose that QNET is asked if Mary was given something by 
someone. Then, the units 'Mary' (units 5 and 6), 'give: subject' (unit 
19), 'give:receiver' (unit 20) and 'give:object' (unit 21) are clamped. For 
instance, we can clamp these units in the first three frequencies with 
amplitudes (113)<112), with kerr=5. As expected, QNET retrieves the three 
first sentences. Figure 11 a shows the summed square differences between 
the four first amplitude patterns and the first sentence; Figure lIb and 
11c show the same quantities for the second and the third sentences. In 
the run that is illustrated in Figure 11, sentence 1 is retrieved in frequen
cy 1 (Figure lla), sentence 2 in frequency 2 (Figure lIb), and sentence 
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3 in the third frequency (Figure 11 c). 4 

A QNET model can store sentences and retrieve in parallel different 
distributed sentence representations indifferent frequencies. Also the way 
in which variables are bound within a sentence can be stored if QNET is 
enriched with higher order connections. I refer to Van Loocke (1996) for 
a brief discussion of this matter. 

5. QNET and genetic algorithms 

We have seen a number of interesting properties of QNET that are due 
the presence of amplitude patterns in different frequencies, and due to the 
updating rule. Another advantage of this model is that it suggests a link 
between neural networks and genetic algorithms. Genetic algorithms have 
been proposed as a method to train backpropagation networks (19xx), and 
genetic considerations have been integrated in more general neural frame- . 

. works (Edelman, 1987), but thus far, this did not result in qualitatively 
new capacities for neural nets. We line out how an integration of QNET 
with genetic algorithms can be more fruitful. 

Let us briefly recapitulate how a genetic algorithm solves a problem 
concerning a particular system (Holland, 1975). As a first step, the 
variables associated with the system are collected in a string of binary or 
non-binary numbers. Then, such a str.ing is mapped on a real number by 
a suitably chosen fitness function. The problem is solved when a string 
is found that maximizes the fitness function. To this end, the genetic 
proceQure of variation and selection is applied. 

The algorithm usually starts with a setof randomly generated strings. 
According to the standard procedure, this set is replaced by a 'next 
generation' of strings in accordance with two processes. First, anew, 
prel iminaryset of strings is formed by letting every string reproduce 
itself with a probability that is proportional to its fitness value. Next, 
strings of this set are combined with other strings of the set. This com
bination may involve a 'crossover', in which both strings exchange 
string-parts. Subsequently, a random clip with low probability may 
follow. The resulting set of strings is replaced again by a next generation 
by the same procedure. This operation is repeated until a population is 
obtained with at least one string that solves the problem. If the initial set 
of random strings is sufficiently large, then many optimization problems 
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can be solved when the number of generations that is -considered is reaso
nably large. 

Neural nets of the Hopfield-type can also be used for constraint
satisfaction and optimization problems, but they are subject to a restric
tion when compared with genetic algorithms. In order for a constraint
satisfaction problem to be solvable by a Hopfield net, its fitness (or 
'enery' - or 'harmony' -) function must be expressible as a bilinear form. 
Genetic algorithms are not subject to this limitation. We give a practical 
example of a problem where this limitation is critical. 

Consider the problem of finding a fractal code for a picture of a tree. 
Suppose that we try to approximate the tree by a single fractal (i.e. the 
image is not segmented). A fractal can be characterized by a set of con
tractive transformations. Every transformation has six parameters. Thus, 
for instance, a fractal composed by 9 contractive transformations is 
characterized by 54 continuous parameters. If every continuous parameter 
is mapped on a discrete set of 16 values, then four bits represent one 
parameter, and the fractal can be characterized by a binary string of 216 
values. In addition, every transformation may be provided with a colour. 
If, for instance, every colour that is considered is encoded by 6 bits, then 
the total length of the string becomes 270 bits. 

A genetic algorithm that aims at finding the fractal code of the pic
ture then starts with a set of binary random strings of length 270. For 
every string, the fitness is calculated by generating the corresponding 
fractal image, and by comparing this image with the image that is given. . 
The more close both images are, the higher the fitness of the string. If 
the initial number of strings is large, it may be expected that an approxi
mation will be found after a sufficiently high number of generations. In 
case of this example, calculating the fitness function is a fairly complex 
{and time consuming) matter. There is no way to express this fitness 
function in a bilinear form that would be suited for implementation on a 

. Hopfield-style network (I refer to Van Loocke, 1997 for a concrete 
elaboration of this example). 

As far as the form of a fitness function is concerned, a genetic al
gorithm is a more general method than is a neural network. Conversely, 
a neural network is good at a number of tasks for which a genetic al
gorithm is not or not equally well suited. A neural network can memorize 
a massive number of patterns that it has learned in accordance with a 
learning algorithm. To some extent, one may include information about 
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previous performances in a genetic algorithm also: along with random 
patterns, the initial population of the algorithm may contain patterns that 
appeared useful in related tasks. However, this memory property is much 
more primitive, and much more subject to trial and error-procedures than 
is the systematic neural net approach. Therefore, one may wonder if it is 
possible to combine the memory capacity of neural networks with the 
more general optimization capacity of genetic algorithms. 

The QNET model suggests such a combination. Let us turn back to 
the example that has been referred to a few lines higher. Suppose that 
strings that were able to code images of trees are memorized in a Hop
field network in accordance with, for instance, a Boltzmann learning 
procedure or in accordance with one of its faster variants. Suppose that 
a new image is presented for which a fractal code must be searched. To 
start with, a number of random strings are generated and a genetic al
gorithm is allowed to produce p generations, with p a number that is 
relatively low. Subsequently, the strings that resulted after p generations 
are mapped on the different frequencies of a QNET -model. This model 
is allowed to update its amplitudes during a number of q cycles, with q 
again a relatively low number. During this part of the process,the memo
ries of the net attract the amplitude patterns. Then, the strings that have 
appeared in the respective frequencies are read, and they are used again 
in a genetic procedure that generates p generations. The resulting strings 
are mapped on the frequencies of the QNET-model, and so on. In case 
a code has been found, it can be added to the set of training stimuli that· 
determines the connections of the network. 

6. Discussion 

The binding problem of connectionism can be solved if a' network in-
, cludes units that support' different amplitudes or 'markers' instead of a 
single activation value. Shastri and Ajjanagadde (1993) suggest that, from 
a physiological point of view, such markers correspond to temporal 
variables. This is consonant with the fact that the importance of temporal 
variables has been suggested regularly in recent physiological literature. 
This holds, for instance, for colour vision (Mc Clurkin et al., van Esch 
et al. 1980), texture (Richmond et al., 1989) audition (Ghitza, 1992), 
pain (Emmers, 1981) taste (Di Lorenzo & Hecht, 1993) and so on (an 
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overview can be found in Cariani, 1995). Also the possibility that tem
poral variables help solving the binding problem has been put forward at 
different instances in this literature (Eclchorn et al., 1990; Engel et al., 
1991). If it is assumed that temporal variables realize bindings, then 
different possibilities remain. For instance, the bindings may be expressed 
by frequencies or by phases. In the latter case, units are bound if they 
fire in synchrony (this option is defended in Shastri and Ajjanagadde, 
1993). 

Relative to these discussions, QNET is a model on an abstract level. 
The terminology 'frequencies' in the context of the QNET-units has been 
chosen because of the fact that QNET has been inspired on particular 
elementary quantum systems. The present study of QNET does not pre
dict a particular neuro-physiological realization of these 'frequencies'. 
Rather, we studied the computational properties of QNET on a level that 
allows for different physical realizations. It must also be clear that QNET 
is not a quantum computer in the sense of Deutsch (1985) or Lockwood . 

. (1989), nor does it predict quantum interactions.in the brain of the type 
that Penrose (1989, 1994) has in mind. QNET is a classical model that 
is inspired on some ideas that also occur in elementary quantum theory, 
but its simulation or its physical realization does not depend, for instance, 
on the use of SQUIDS. A quantum computer would operate in many 
parallel worlds. QNET operates in many parallel frequencies, but all of 
them belong to the same world. _ 

Section 5 of this paper suggests a way to reconcile QNET with 
genetic algorithms. Genetic methods in the cognitive domain have not 
only gained attention within a context of artificial intelligence applica
tions; but also in a context of more theoretical developments. In special, 
different authors proposed to describe the dynamics of concepts in terms 
of evolving memes. These descriptions usually do not assert that concepts 
must evolve according to present-day artificial genetic algorithms. How
ever, explanations often include suggestions in this direction, and discuss, 
for instance, properties of fitness landscapes for memes. In view of the 
merits that connectionism has acquired during the past ten years, it is 
relevant to notice that genetic approaches are not in contradiction with 
connectionist models, but that they can give a wider scope to connec
tionist models. 

U niversiteit Gent 
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NOTES 

1. Slightly more technically, the state of a quantum system is a vector of a 
Hilbert space. A state that corresponds to an unequivocal frequency is called 
a pure state. A state of a quantum oscillator can always be written as a 

. weighted combination of pure states. The coefficients in this combination 
are amplitudes, and the squares of these coefficients give the observation 
probabilities. The state of a quantum system obeys the Schrodinger equa
tion. This equation describes the evolution of a system and the interactions 
between different systems. The equation contains the state-vector, but not· 
the observation probabilities. In an operation that frequently occurs in 
quantum calculations, the state vector is replaced by its decomposition in 
pure states. Then, the Schrodinger equation results in an equation for 
amplitudes. 

2. To explain this QNET -property, suppose that, as a consequence of a suita
bly chosen input pattern, the same memorized patterns are partially active 
in more than one frequency. For instance, suppose that there is a set of 
units which participate in memory patterns 1 and/or 2, and suppose that 
these units are active in frequency 1 as well as in frequency 2. Now con
sider a unit that participates in the representation of memory pattern 1 but 
not in the representation of·memory pattern .2. Suppose that, in this unit, 
one of both frequencies has a slightly higher amplitude than the other 
frequency. For instance, suppose that the amplitude in the first frequency 
in this unit is slightly higher. Then, due to the squares that appear in step 
(i) of the updating rule, in its communication with other units, this unit 
supports the first memory pattern significantly stronger in the first frequen
cy. For the same reason, it communicates significantly less information that 
concerns its amplitude in the second frequency. Hence, it will not help to 
draw the first memory into the second frequency, nor will it inhibit the 
realization of the second memory pattern in the latter frequency. Such 
processes may be at work in several units, and some of them may counter
act each other. Then, the network enters an unstable phase that stimulates 
the occurrence of more fluctuations, until a fluctuation occurs that favours 
one of both memory patterns to a sufficient extent in one of both frequen
cies. This effect, that has been observed in many simulations of QNET, 
would be impossible if step (i) of the updating rule contained a linear 
principle instead of a square one. 

3. Th~ pattern of activation for which this assertion was verified takes value 
one when the amplitudes of the first three frequencies is (1/3)(1/2), and it 
takes value zero when the amplitudes in the first frequencies are zero. 
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4. We notice that the quantities that are plotted and that concern the first four 
frequencies cannot decay below 1.17 if sentence 4 is retrieved in two fre
quencies. Every clamped unit gives a contribution (1-(114)(112»2 =0.25 to 
these quantities. Once the sentence has been retrieved, a non-clamped unit 
of sentence 4 gives a contribution (1-(1I2)(II2)?=0.086, so that the minimal 
value for the distance measure in every frequency is 4x.25 +2xO.086= 1.17. 

5. This time, the distance measure has a lowest value of 5.(1-
(113)(1/2)2=0.893. 

REFERENCES 

Amit D., Gutfreund H., Sompolinsky H. (1985), Spin-glass models of 
neural networks, Physical Review A 32, pp. 1007-1018 

Cariani P. (1995), As if time really mattered. Temporal strategies for 
neural coding of sensory information, CCAI: Journalfor the Integrated 
Study of Artificial Intelligence, Cognitive Science and Applied Epis
temology 12, pp. 157-219 

Deutsch, D. (1985), Quantum theory, the Church-Turing principle and the 
universal quantum computer, Proceedings of the Royal Society A400, 
pp. 97-117 

Di Lorenzo P .. , Hecht G. (1993), Perceptual consequences of electrical 
stimulation in the gustatory system, Behavioral Neuroscience 107, pp. 
130-138 

Eckborn R., Reitboeck H., Andt M., Dicke P. (1990), Feature li~ing via 
synchronization among distributed assemblies: simulations of results 
from cat visual cortex, Neural Computation 2, pp. 293-307 

Edelman G. (1987), Neural Darwinism, New York: Basic Books 
Emmers R. (1981), Pain, a spike-interval coded message in the brain, New 

York: Raven Press 
Engel A., Koenig P., Kreiter A. Gray C., Singer W. (1991), Temporal 

coding by coherent oscillations: a potential solution to the binding 
problem, in Schuster H., Singer W. (eds.), Nonlinear dynamics and 
neural networks: Weinheim 

Fahlman S. (1979), NETL: A systemfor representing real-world knowledge: 
MIT Press 

Ghitza O. (1992), Auditory nerve representation as a basis for speech 
processing, in Evans E., WilsonJ. (eds.), Psychophysics andphysiolo
gy of hearing, London: Academic Press . 

Hopfield J. (1982), Neural networks and physical systems with emergent 
collective computational abilities, Proceedings of the National Academy 



THE CONNECTIONIST MODEL QNET 

of Sciences: USA 79, pp. 2554-2558 
Kanter 1.,- Sompolinsky H. (1987), Associative recall of memory without 

errors, Physical Review A 33, pp. 380-392 
Lockwood M. (1989), Mind, brain and the quantum, Oxford: Blackwell 
Mc Clurkin,J., Zarbock J., Optican L. (1993), Neurons in primate visual 

cortex multiplex information about red/green, blue/yellow, and 
black/white opponencies using temporal codes, Neuroscience Abstracts 
19, 1576 

Penrose O. (1989), The emperor's new mind, Oxford: Oxford University 
Press 

Penrose O. (1994), Shadows of the mind, Oxford: Oxford University Press 
Personnaz L., Guyon 1., Dreyfus, G. (1986), Collective computational 

properties of neural networks: new learning mechanisms, Physical 
Review A 34, pp. 4217-4228 

Richmond B., Optican L., Gawne T. (1989), Neurons use multiple mes
sages encoded in temporally modulated spike trains to represent pic
tures, in Kulikowski J., Dickenson C. (eds.), Seeing contour and 
colour pp 705-713, New York: Pergamon Press 

Rumelhart D., Smolensky P., Mc Clelland J., Hinton G. (1986), Schemata 
and sequential thought processes in PDP models, in: Mc Clelland, J., 
Rumelhart, D. (eds.), Parallel distributed processing: explorations in 
the microstructure of cognition, vol 2: MIT Press 

Shastri L., A.ijanagadde V. (1993), From simple associations to systematic 
reasoning: a connectionist representation of rules, variables and dyna
mic bindings using temporal synchrony, Behavioral and Brain Sciences 
16, pp. 417-494 '. 

Van Loocke Ph. (1991), Study of a neural network with a meta-layer, 
Connection Science 4, pp. 367-379 

Van Loocke Ph. (1994a), The dynamics of concepts: a connectionist model, 
Heidelberg/New York/Berlin: Springer Verlag 

Van Loocke Ph. (1994b), Connectionisme en natuurfilosofie. Een onderzoek 
van enkele concrete mogelijkheden tot interactie, Ghent: Communica
tion and Cognition (higher aggregation dissertation; published in 
Dutch) 

Van Loocke Ph. (1994c), QNET: A new connectionist architecture and its 
relevance for variable binding and constraint satisfaction problems, 
Cybernetica 38, pp. 85-106 

Van Loocke Ph. (1996), Constraint satisfaction in different frequencies of 
a single network and the binding problem, paper submitted to the 
NIPS-1996 conference 

Van Esch A., Van 't Veld J., Koenderinck J. (1988), A temporal opponent 

129 



130 PHILIP VAN LOOCKE 

red-gr~n mechanism, Biological Cybernetics 58, pp. 329-355 




