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REVISITING THE MENTAL MODELS THEORY 
IN TERMS OF COMPUTATIONAL MODELS 

BASED ON CONSTRUCTIVE INDUCTION 

Stefania Bandini, Gaetano A. Lanzarone & Alessandra Valpiani 

1. Introduction 

In the theoretical framework developed by Johnson-Laird (1983; 1993) 
about mental models and their role in human reasoning, induction is 
defined as a thought process starting with a set of observations, whose 
goal is to frame a hypothesis that reaches a better description or under­
standing of this information in relation to a background of general knowl­
edge; any hypothesis can be evaluated and as a result, maintained, modi­
fied or abandoned. A distinctive feature of induction is that its conclu­
sions increase knowledge in a plausible way. 

The J ohnson-Laird theory describes how such a process generates 
hypotheses through procedures of construction, manipulation and revision 
of mental models; it does not, however, give an explicit and formal (i.e., 
useful in the design of a computational model) description about how 
conclusions can go beyond the specific events considered to enrich the 
initial information. 

The reinterpretation and development of this part of the J ohnson­
Laird theory, within the framework of a computational system, is the 
main goal of the work here presented, as the construction of such a 
system requires the adoption or development of a more articulated inves­
tigation into the necessary model of inductive process. The topic, the 
methods and the theoretical framework here used for leading the inves­
tigation belong to Cognitive Science, focusing on the study of conceptual 
systems and mental operations and structures through use of several 
disciplinary approaches and results (in our case, from Artificial Intel-
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ligence to Logic Programming, passing through Cognitive Psychology 
and Qualitative Physics). Within this scenario, the main points of the 
work described in this paper are: 
(1) adding a computational perspective to the conceptual system of mental 
models involving ind~ction by introducing some recent advances in 
Machine Learning, namel y, constructive induction (Idestam-Almquist, 
1992); 
(2) introducing a model and a computer system for representing and 
manipulating qualitative and common sense knowledge and reasoning 
about the physical world within the conceptual framework of mental 
models (Carassa et al., 1995); 
(3) developing a system architecture for simulating the basic operations 
of mental models theory (construc.tion, manipulation, revision) and of the 
induction process (incremental learning by analysed examples). 

With respect to the first point, the generation of hypotheses as a 
succession of mental models is considered to be the preliminary stage of 
the inducti0n process, while constructive induction is the logical operation 
used for selecting information and evaluating hypotheses. 

A computational solution for formulating general hypotheses and 
enriching knowledge, coherently with the general mental models theory, 
covers the non-defined parts part of the Johnson':' Laird theory. Two basic 
assumptions are needed: 
• the set of hypotheses is a succession of examples, following the 

conceptual structure that defines a mental model as an example of the 
specific situation that it represents; 

• the evaluation of mental models is a constructive induction problem, 
i.e., through the analysis of hypotheses, new knowledge with respect 
to some background knowledge is produced and integrated in a 
plausible way., 

Regarding the second point, the ,circumscribed knowledge topic is qualita­
tive common sense reasoning about physical systems (Hayes, 1979), a 
research area thoroughly investigated in Artificial Intelligence (Weld and 
De Kleer, 1990), which involves in an interdisciplinary way other crucial 
research topics in Cognitive Science, such as studies about cognitive 
physical pattern preservation in education (DiSessa, 1982), or specifically 
about mental models (Carassa et al., 1995) (Forbus and Gentner, 1997). 

Following Holland et al. (1986), we are in a problem-solving con­
text, i.e. to yield infer.ences that increase background knowledge in order 
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to construct explanations of a physical situation, inductively drawing 
meaningful and holding relations (e.g., causal). When initial premises 
describing a. circumscribed physical situation are given to the system, it 
tries to reconstruct a physical process that is able to generate the situa­
tion, on the basis of a given physical model contained in the knowledge 
base of the system (structured as a process-based knowledge represen­
tation, derived from the qualitative process theory - QPT (Forbus, 
1984». With this aim and by means of experimental manipulation, the 
system runs and stores a set of tentative explanatory models (examples), 
each corresponding to a hypothesis about the relations and the dynamic 
aspects of the physical process. More specifically, mental models of the 
physical world are modelled by means of an extension and a logic pro­
gramming interpretation (Bandini et al., 1988) of the above mentioned 
QPT, whose main constructs allow mental models theory components to 
be described and manipulated without upsetting the structure of the theo­
ry. 

Finally, with respect to the third point, a specific architecture has 
been designed and developed to allow· simulation of the entire process 
(construction, manipulation, revision). Specifically and from a functional 
point of view, when initial premises describing a physical situation are 
given to the system, this tries to reconstruct a physical process able to 
generate the situation (as above mentioned). By means .of experimental 
manipulation, it creates a series of tentative explanatory models, each 
corresponding to a hypothesis about the causes and the dynamics of the 
involved physical process. When an anomaly on parameters is en­
countered that the background knowledge is unable to justify, the search 
for an explanation by means of a revision process (Johnson-Laird, 1983) 
leads to building a set of alternative models. New models (as examples) 
are produced by adding new entities or changing qualitative parameters 
of already represented entities. Thus, the repeated manipulations con­
strained by previous knowledge and the evaluation in relation to the 
premises allow the system to draw a plausible explanation about the 
causes and the dynamics of the physical process generating the situation. 

The construction of a model, which is consistent with both the back­
ground knowledge represented in the system and the examples about the 
considered situation, leads to a plausible explanatory hypothesis. Such a 
hypothesis is specific in that it is valid only for the particular situation 
described by the initial observations. Moreover, the system may yield 
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overall hypotheses through comparative analysis of the incrementally 
generated models. These hypotheses cover classes of situations and en­
hance the background knowledge of the system, allowing incremental 
learning by analysed examples to be performed, guided by constructive 
induction inference. 

The structure of the paper is the following. Section 2 introduces the 
main aspects of the mental models that we implemented in the system. 
Section 3 describes how mental models of physical phenomena are built 
and their temporal evolution simulated. Section 4 shows how the search 
for an explanation leads to building alternative models; then it describes 
how comparative analysis of models can be seen as a constructive induc­
tion problem and thus general conclusions can be induced. Finally, some 
concluding remarks are made. 

2. Mental Models and common sense reasoning about the physical 
world 

Common sense and qualitative reasoning about physical systems, within 
the general framework of Artificial Intelligence and from a Cognitive 
Science perspective, implies the computer manipulation of physical mod­
els not entirely derived' from or described by the quantitative classical 
models developed in Physics, but involves mental operations and struc­
tures that humans use when reasoning about the physical world. For this 
reason, representational languages, computational environments and 
theoretical models have been developed over time, producing meaningful, 
contributions to a better comprehension of the cognitive mechanisms 
involved when humans interact with the physical reality they inhabit. 

Understanding the cognitive models people use in reasoning about the 
physical world is an important issue for Cognitive Science. Moreover, 
mental models theory provides many attractive features for developing 
computational models and systems able to manipulate physical situations 
(Geminiani et aI., 1996; Forbus and Gentner, 1997): 
(i) Mental models are dynamic structures which are created on the spot 
to meet the demands of specific problem-solving situations. 
(ii) They perform the task of exploring complex and unknown situations, 
in that they include structures and processes able to simulate the tran­
sitions that can occur in phenomena being modelled. 
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(iii) When the available knowledge is incomplete, they make assumptions 
by means of a revision process in order to complete the explanation, each 
assumption leading to the construction of a mental model containing a 
hypothesis about the causes and dynamics of the physical situation. 

By means of these features, it is possible to predict the onset and 
course of physical processes, to find out how to influence, control and 
prevent them, to diagnose unusual events, to allow the exploration of 
complex and unpredictable aspects of the physical phenomenon, and to 
reveal the incorrectness and/or incompleteness of the background knowl­
edge. For these reasons, the physical process manipulation kernel of the 
illustrated computational system has been tested as an automated support 
for psychological experimentation, both within a toxicology framework 
(Carassa et al., 1995) and as a control system for managing urban traffic 
situations (Bandini et aI., 1997a; 1997b). 

2.1 Mental Models and Causal Models 

Experimental psychology has demonstrated that humans and most superi­
or mammals (Sperber et al., 1995) perceive causality when they are 
observing objects that come into direct contact. The term perception 
denotes that no cognitive process is requested; in fact, infants, 4 and a 
half months old have the same interpretation of causal sequences as 
adults: this kind of perception is automatic, obliged and innate (Leslie and 
Keeble, 1987; Michotte, 1946). 

Geminiani et al. (1996) maintain that contact between objects is the 
crucial aspect of physical causality, not only in perception, but also at the . 
cognitive level of causal analysis. The basic idea is that when human 
subjects are reasoning about two events which they judge to be causally 
linked, they try to represent a physical interaction between objects. There 
is much concern about assigning causal roles to two specific objects 
(AGENT and TARGET) and envisaging how they come into contact. 
Contact is seen as the necessary condition for the realisation of the causal 
link between events at a more abstract level. 

In order to reason about the dynamics of a physical process, it is 
necessary to postulate the presence of a MEDIUM, an object or a set of 
objects that allows an AGENT to act on a TARGET in spite of their 
spatial non-contiguity. The causal process is the process that occurs first 
and allows contact between AGENT and TARGET be performed. A set 
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of -MODIFIERS, i.e. elements able to influence causal reasoning, may 
also be considered. 

According to Johnson-Laird (1983), there are six major types of 
mental models of the physical world, one of which .is the "kinematic 
model", representing changes and motions of depicted entities. Dynamic 
models are a subset of kinematic models and represent causal relations 
between certain events in a temporal sequence. Geminiani et al. (1996) 
provide a model to explain causality by contact, concerned only with a 
subset of dynamic models -causal models-- in which causal events are 
represented as physical objects and processes. 

In the following, we will adopt a very naive but intuitive example as 
a case of causality by contact (Carassa et al., 1995): the poisoning of a 
person caused by a snakebite. The poison (AGENT) is represented as an 
aggregate of particles carried by the blood flow within the circulatory 
system (MEDIUM) towards the heart (TARGET). MODIFIERS are 
elements influencing the path of the poison from the bite to its final 
destination. 

Causal models include: 
• _ a structural component that represents objects, their physical behavi­

our and physical relations; 
• a modifiable component that represents qualitative parameters of 

objects, their behaviour and their relations. 
Qualitative parameters include: 

• physical properties (e.g., the position of the bite and size of the 
vein); 

• spatial and temporal relations (e.g., the distance between the heart 
and the point of entry of the poison or the time between the snakebite 
and the injection of an antidote). 
Specifying the qualitative parameters corresponds to the construction 

of a specific model. A reasoning process starts with the construction of 
a BASE MODEL, the simplest model representing the physical process 
without MODIFIERS, and with standard values of the qualitative para­
meters, taken as a reference system for all other models. Alternative 
models can be constructed by varying these parameters and by intro­
ducing MODIFIERS. 

It is important to note that a causal model is a dynamic model that 
develops with time, simulating how involved objects interact. 
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2.2 Reasoning processes 

The starting point of reasoning about physical phenomena is to assign 
causal roles to two specific entities and simulate how they can come into . 
contact. Considering how the contact can be realised, as well as facilita­
ted or hindered, is essential for planning how to modify or direct the 
course of the events. Mental models are a representational structure able 
to support exploration and explanation of physical situations as reported 
above. 

In accordance with the spirit of the mental models theory, the in­
ferential processes involved in common sense reasoning are the follow­
ing: 
• a construction process: takes as input premises expressing causal 

events, generating mental models of involved physical entities and 
processes; 

• a matching process: has dynamic models as input, carrying out a 
series ·of comparisons between them and producing as output a first 
conclusion; 

• a revision process: evaluates the extent to which the first conclusion 
can be considered acceptable, by searching for alternative models. 

Though based on mental models, reasoning processes always rely on 
examples, a mental model being a representation of a specific situation. 
To verify the general validity of a reasoning process based on the analysis 
of particular cases, it is necessary to generate a finite set of significant 
examples using "falsify" procedures on ·mental models (Johnson-Laird, 
1983). 

3. Causal Models· and QPT 

Providing a computational representation of causal models is crucial, in 
that the availability of a formal description language is the starting-point 
for developing a computational system for reasoning about physical 
situations'. We adopted a logical interpretation of Qualitative Process 
Theory -QPT - (Forbus, 1984), proposed by Bandini et al. (1988), in 
order to capture in a computer program the main tenets of the mental 
models. In fact, QPT preserves their main characteristics and, moreover, 
it allows for passing from an intuitive description of mental models to a 
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fully worked-out computational model. QPT has many advantages for 
representing the mental models of the physical world in computational 
terms. 
e It allows various common sense physical domains to be represented 

and treated. 
• It supports the qualitative approach, typical of common sense reason­

ing, to represent parameters characterising entities involved in mental 
models; moreover, it provides an accurate representation of the 
qualitative parameters of individual entities' and of the relationships 
between them. 

• A causal model is a dynamic model that develops with time, simula­
ting how involved entities interact. QPT allows the dynamic aspects 
of objects to be represented by means of the notion of physical pro­
cesses. 

• It allows causal relations between objects (AGENT, MEDIUM, 
TARGET and MODIFIERS) to be explicitly represented by means 
of qualitative dependencies. For a discussion about explicit and 
implicit descriptions of causality between qualitative parameters, see 
Forbus and Gentner (1986). 

• It introduces explicit representation and treatment of actions, which 
allow new entities and processes to be introduced during the simula­
tion of a physical model. This supports the construction of alternative 
m<?dels during the revision process. 

3.1 Representing causal models 

Now we present a Qualitative Process Theory (QPT) computational model 
based on a language -QPL-, for the description of physical domains and 
situations, and an interpreter for QPL -IQPL-, providing the main primi­
tives for reasoning about the descriptions of physical systems and do­
mains. The interpreter is implemented in Prolog language. 

Qualitative Process Theory is a formal instrument for representing 
knowledge and supporting common sense reasoning about the dynamics 
of physical situations. A qualitative description of a physical situation 
implicitly embeds common sense knowledge on the behaviour of the 
situation itself, namely its dynamic description. Two elements are needed 
for the inferential apparatus of QPT to render this knowledge explicit. 
• A knowledge base: common sense knowledge on the domain to which 
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the situation belongs. It comprehends individual objects involved, 
their properties and the relations between them. Moreover, the de­
scription of the processes that can occur in such a domain is essen­
tial. In QPT, it is a non-changeable type of knowledge. In our sys­
tem, it can be revised and augmented hy means of a constructive 
induction process. 

• A scenario: the description of a physical situation belonging to the . 
domain at a given time. The scenario is a set of logical predicates, 
which are considered to be simultaneously true. 

QPLanguage Mental Model 
entity objects and their physical properties 

individual view 
process behaviour and interaction 
action between objects 

scenario initial state of the model 

FIGURE 1: Correspondence between mental models of the physical world 
and QPL 

The fundamental feature which marks this reinterpretation of QPT 
that we used is its logical conception: QPL, in fact, is a language entirely 
based on predicate logic. The figure above shows the correspondence we 
adopted between QPL and causal models. 

Following is a brief description of main components of QPL models. 
Entities. These represent the individual entities of causal models. In a 
poisoning situation, entities are the poison, the antidote and so on. Rele­
vant characteristics of entities are represented by qualitative variables, 
which take on values in the totally ordered set of symbols: 

{infneg, highneg, ... , zero, lowpos, ... , infpos} 

This set is called the Qualitative Quantity Space(QS) (De Kleer and 
Brown, 1984), where every qualitative value corresponds to an interval 
of real numbers, except for zero, which corresponds to a number. The 
granularity of the QS depends on the considered physical domain. 
Processes. The behaviour of entities can be represented by processes; 
examoles are the flow of noison within the circulatory system and the 
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action of some MODIFIERS on this flow. Processes are mechanisms that 
act on entities by changing their qualitative parameters. Influence is the 
main component of a process and represents direct causes of change. 
Indirect causes are represented by means of dependencies (see below). 
QPL represents influences using the syntax: 

influence(increase,Intensity,Parameter)-positive 
influence­
influence(decrease,Intensity,Parameter)-negative 
influence-

The value of a changing Parameter increases when influenced by a posi­
tive influence and decreases when affected by a negative influence. 
Dependencies. These express indirect causes of change. If a process, by 
means of an influence, directly affects some parameter R and some other 
parameter Q is qualitatively proportional to R, then we say that R in­
directly influences Q. In QPL they are represented by the syntax: 

dependency (Direction, Type, Quantityl, Quantity2) 

where Direction indicates direct or inverse direction of the dependen­
cy, and Type indicates the type of dependency between Quanti tyl and 
Quanti ty2. Type takes values within the totally ordered set of symbols: 

Actions. These describe instantaneous changes which can occur during a 
process and their structure derives from STRIPS (Fikes et al., 1971). 
This distinctive characteristic of QPL (Bandini et al., 1988; Forbus, 
1989) introduces the possibility of representing and handling changes 
within the execution of a process. For example, it allows the introduc­
tion, at various times during the simulation of a process, of new entities, 
which are not present when the process starts. Effects of an action persist 
until simulation ends or a new action is introduced, which restores the 
previous state. 

With respect to the cognitive model, TARGET, AGENT and 
MEDIUM are represented in terms of QPL entities. MODIFIERS can be 
represented both by entities interacting with AGENT and by processes 
and actions. 
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In the following a poisoning model in QP language is presented. 

poison (Name) is_a entity with 
quantities: poison_in_vein(Name) 
and relations: 

poison_in_vein(Name) 
greater_than_or_equal_to_zero. 

vein (Name, E) is_a entity with 
quantities: length (Name) & width(Name) 
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and relations: 
dependency(inv,poli,width(Name),blood_speed(E)) . 

blood_flow (Name, E) is_a process with 
individuals: poison (Name) & vein (Name, E) 
and preconditions: alive 
and influences: . 

influence(increase,tot(E) ,poison_in_heart(Name)) 
& 
influence(decrease,tot(E) ,poison_in_vein(Name)). 

tourniquet(T, Name, E) is_a action with 
individuals: vein (Name, E) 
and preconditions: alive & not_tourniquet 
and add_list: yes_tourniquet & 

dependency(linear,tot(E),tightness_degree(_,X)) 
& influence (decrease; tot(T),width(Name)) 

and delete_list: decrease(tot(T),. width(Name)). 

snakebite (Name, E, 0) is_a scenario with 
individuals: . poison (Name) & vein (Name, E) & 
heart (E) 
and initial_values: 

alive & poison_in_heart(Name) is_equal_to zero & 
not_tourniquet & not_antidote & not_cardiotonic 

and end_conditions: 
dead : poison_in_vein is_equal_to zero. 

3.2 Simulating causal models 

A program devoted to qualitative reasoning on a represented physical 
situation can be intuitively conceived of as an "interpreter" of such a 
representation, on which it must be able to operate suitable manipula­
tions. A QPT interpreter manages the dynamics of the physical situations 
described in a model, by simulating the behaviour of the entities involved 
and their interaction. Behaviour and interaction are represented as proces-
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ses that act on entities and between them by modifying their qualitative 
parameters. 

In order to simulate models of physical situations, the IQPL -Inter­
preter of Qualitative Process Language- follows two steps. 
1. Activation of starting conditions - It activates entities, processes and 
actions whose conditions are verified (or deactivates them). 
2. Modification of qualitative parameters - Until a steady state is reached 
(a steady state corresponds to the exhaustion of particles of poison or to 
the reaching of the deadly threshold), IQPL: 
• changes parameters of entities which thus evolve from the current to 

the next state; 
• resolves conflicting influences acting on a single entity and deter­

mines the resulting direction of change; 
• propagates changes in a parameter to all other parameters functional­

ly dependent on it. 

4. Architecture of the System 

According to J ohnson-Laird (1993), induction occurs in three stages. The 
first stage is to grasp some propositions, some verbal assertions or per­
ceptual observations. The second stage is to yield a mental model (hypo­
thesis) that reaches a better description or understanding of this infor­
mation in relation to a background of general knowledge. Such models 
have to be consistent with both such observations and background knowl­
edge. The third stage is to evaluate the hypothesis and as a result, to. 
maintain, modify or abandon it. 
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The overall system architecture reflects the proposed phases. Their mod- . 
ules and their correspondence to the main phases are depicted in Figure 
2. 

4.1 Syntactic-Semantic Analyser 

This allows introduction of natural language sentences, which give infor­
mation about physical situations that can occur within a particular physi­
cal domain. It is based on a phrase-structure grammar proposed by 
Chomsky (1957) (for a detailed description, see Carassa et al., 1995). As 
output, the analyser carries out the scenario, providing the construction 
module with the description of the physical situation that has to be ana­
lysed. 
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4.2 Construction Module 

In order to draw inferences about physical situations, the system builds 
models of them, making use of data drawn from: 
(i) A scenario, representing the initial information provided to the system 
and describing a physical situation belonging to the domain at a given 
time. 
(ii) The knowledge base, expressing the cornmon sense knowledge on the 
domain to which the situation belongs, represented in QP Language. 

Modelling procedures, on the basis of the initial information, build 
QPT models of described situations by activating entities and processes 
from previous knowledge. Moreover, they assign values to each of the 
qualitative parameters characterising entities, their relationships and 
processes. 

Simulating procedures, by means of the Interpreter QPL, represent 
the dynamic evolution of the physical situation described in QPT models, 
by simulating the entities' behaviour and the interaction between them. 

Every simulation results in a final state of the specific situation. In 
a causal model, the final state regards the fact that contact between 
AGENT and TARGET could take place or not and, in case of contact, 
the. qualitative characteristics of the Gontact itself are specified. In the case 
of poisoning, the main parameter characterising the final state is the 
amount of poison in the heart: this amount maybe lower or higher than 
the lethal threshold. 

A previous implementation of the CONTROL and CONSTRUCTION 
MODULE has been presented in Carassa et al. (1995). 

4.3 Control Module 

The system draws backward inferences: when in a problem-solving 
context it recognises the initial and the final state of a situation, it tries 
to reconstruct the intermediate events. In the case of poisoning, when the 
initial state -snake-bite- and the final -death or survival- are both given, 
the aim is to define some enabling conditions -i.e. the injection of an 
antidote- to evolve the model in the desired way. 

As input, the CONTROL MODULE receives the causal model and 
its evolution from the CONSTRUCTION MODULE. If the correspon­
dence between the final state of the model produced by the CONSTRUC-
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TION MODULE and the conclusion prescribed by the premises is not 
fulfilled (see example below), the CONTROL MODULE searches the 
various enabling conditions that would allow the model to approach the 
fixed final state. It follows that in order to draw a backward inference, 
the system generates different forward simulations, until the desired final 
state is reached; in fact, given an initial and a final state of a physical 
situation, there are different ways of connecting them. For this reason, 

. the CONTROL MODULE introduces modifications to the model. In this 
way, new models are recursively built until their final state is compatible 
with the final state defined by the initial premises. The CONTROL 
MODULE is composed of matching procedures and revision procedures. 
The last state how alternative models can be generated. Two strategies 
are applied: 
• new entities (MODIFIERS) are introduced, which can progressively 

be added to the initial model, so as to originate increasingly complex 
models; 

• qualitative parameters of the already represented entities are sys-
tematically changed. 

It is important to stress that, when the correspondence between the causal 
model and the initial premises is not fulfiiIed, there is no explicit rule that 
prescribes how a model should be modified so as to approach the fixed 
final state. Revision procedures proceed by trial and error. They intro­
duce in succession only one change. Pairs of models, which differ one 
from the other in a single characteristic, are matched by matching proce­
dures, in order to discover the precise effect of the change; in fact, the 
matching procedures find out how two dynamic models differ in their 
qualitative parameters and in their final states. Revision proceeds by the 
selection of changes that lead the final state of a model closer to the 
desired situation. 

From a computational point of view, QPT allows new entities 
(MODIFIERS) to be introduced during the revision of a causal model, by 
means of explicit actions activated during qualitative simulation of proces­
ses. 

Example of model generation 
Now we describe an example of backw"ard inference. A situation is 
presented where Cleopatra survives a snake-byte and has been applied a 
not very tight tourniquet. The goal of the system is to find out the en-
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abling conditions justifying such an evolution. With this aim, the system 
builds, revises and matches a succession of models, until a model is 
found whose conclusion coincides with the prescribed final state. 

Premises: 
Cleopatra was bitten by a very poisonous snake; 
Cleopatra was applied a not very tight tourniquet; 
Cleopatra survived. 
Modell 
Conclusion: the amount of poison in the heart is greater than the lethal threshold. 
Cleopa~ra died. 
> > > Premises are not verified < < < 

Since the final state of MODELl does not correspond to the result men­
tioned by the premises, the system applies revision procedures that lead 
to the construction of an alternative model-MODEL2-, where the tourni­
quet is applied after a long period of time. 

Model 2 
Revision by trial: the tourniquet was applied after a long time from the bite 
Conclusion: the amount of poison in the heart increases. Cleopatra died. 
> > > Premises are not verified < < <; goal is further away 

Since the final state of MODEL2 is further than the one of MODELl 
from the prescribed final state, MODEL2 is rejected. Comparing 
MODELl and MODEL2 guides the system into the next revision. 

Model 3 
Revision guided by comparing Modell and Model2: the tourniquet was applied 
a short time after the bite 
Conclusion: the amount of poison in the heart decreases. Cleopatra died. 
> > > Premises are not verified < < <; goal is closer 

Since MODEL3 is nearer to the goal, the modifying path of the revision 
is correct. Following it, MODEL4 reaches the prescribed conclusion. 

Model 4 
Revision guided by comparing Model2 and Model3: the tourniquet was applied 
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a very short time after the bite 
Conclusion: the amount of poison in the heart is lower than the lethal threshold. 
Cleopatra survived. 
> > > Premises are verified < < < 

The repeated revision of the models and the evaluation in relation to 
the premises allow the system to construct a model which is consistent . 
with both the background knowledge represented in the system and the 
information provided by the premises. This model represents a plausible 
explanatory hypothesis about the causes and the dynamics of the physical 
process generating the situation. Such a hypothesis is specific in that it is 
valid only for the particular situation described by the initial premises. 

4.4 Inductive module 

In order to yield overall hypotheses covering classes of situations, the 
system analyses the series of successive models of the physical domain 
generated by the revision process. 

For the evaluation of hypotheses and the enrichment of background 
knowledge, we turned to recent advancements in the Machine Learning 
field, whose methods are natural candidates for providing computational 
tools able to model human learning. Specifically, our approach being 
based on a logic representation, we made use of results from Inductive 
Logic Programming (ILP - Muggleton, 1991; Muggleton and DeRaedt, 
1994), a research area rooted in computational logic and inductive ma­
chine learning. Prominent characteristics of ILP are: (i) the ability to 
induce hypotheses from observations (examples); (ii) the use of substan­
tial background knowledge in the learning process and the use of such 
knowledge as essential for guiding the computational system to achieve 
effective domain knowledge. 

With this aim, the series of tentative explanatory models is first 
considered as a set of examples. A mental model can be viewed as an 
example, in that it always represents a specific situation: it is not a gene­
ral structure, but is constructed for the particular goal pursued. 

In particular, we state the comparative analysis of models in terms 
of a constructive induction problem (Ides tam-Almquist , 1992). This 
problem is formally defined in the following way. Given: 
(i) Knowledge Rules (KR) 
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(ii) Case Facts (CF) and 
(iii) a Reached Conclusion (RC) , 
such that: KR U CF 1-1- RC, find IR (Inductive Rules) such that: KR U 
CF U IR I- RC. 

Informally, this means that, whenever the background knowledge is 
insufficient to explain (in logical terms, to derive) the conclusion ob­
served in the case at hand, additional rules· are inductively searched for, 

. which, when added to the background knowledge, allow the derivation 
of the conclusion. 

In our framework for mental models of physical situations, we have 
the following correspondence with the terms of the constructive induction 
problem: KR corresponds to the BASE MODEL (§ 2.1); CF corresponds 
to the particular facts described by the premises, characterising the initial 
state of the physical situation; IR are the overall hypotheses expressed as 
general rules; RC corresponds to the final state prescribed by the prem­
ises. 

Thus we have: given a set of examples (models) and a background 
knowledge (domain knowledge of the system), the goal is to find a hypo­
thesis that explains the examples with respect to the background knowl­
edge. Discovering such hypotheses can lead to an enrichment of the 
knowledge domain, in that they reveal new causal relations between 
existing entities in a mental model. By means of such causal relations, the 
system finds out how to influence, initiate or prevent the physical phe­
nomenon represented in the models and how to diagnose unusual events. 

The simulation process constructs models by finding, for each set of 
parameter values, specific enabling conditions leading from the initial 
state to the final state of that model. Using these results, the constructive 
induction process constructs new rules expressing general enabling con­
ditions over the set of all models. The overall hypotheses are therefore 
expressed as general rules covering classes of situations and the back­
ground knowledge of the system is subject to these new rules. Conse­
quently, the system may flesh out a model of a new situation with the 
additional information that is automatically provided by its knowledge, 
without regenerating a series of tentative models. 

An inductive logic program has been used, which was previously 
developed (Baroni, 1997) and experimented in another domain (Costantini 
and Lanzarone, 1996). 

In the case of the-analysis of a MODIFIER, the system can find out 
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how, by varying its parameters, to influence the given situation. As an 
example of MODIFIER, a tourniquet is characterised by three parame­
ters: degree of tightness, time elapsed before its application and point of 
application. A tourniquet is proximal, if it is placed between the snake­
bite and the heart, or distal, if placed before the bite. 

In order to find out how a tourniquet has to be applied, the system 
systematically changes its parameters and observes the resulting effects 
on the evolution of the situation. The introduction of any change cor­
responds to the generation of a new model. .The CONTROL MODULE 
retains such a succession of models, collecting for any of them the rele­
vant parameters characterising its initial -corresponding to CF- and final 
state -corresponding to RC-. If in a mode~, a not tight tourniquet is 
applied in proximal position a very long time after the bite, a great 
amount of poison accumulates in the heart. The initial and final state in 
such a model are the following: 

Initial state (Case Facts) 
tightness _ degree(modelo, lowpos). 
time _ application(modelo, highpos). 
point_ 0Capplication(modelQ> proximal). 

Final state (Reached Conclusion) 
pOiSOll_ amount(modelo, highpos) .. 

During the revision phase and the exploration of the effects of a tourni­
quet, a set of models 'are collected: 

Initial states (Case Facts) 
tightness _ degree(model j , lowpos). 
tightness_ degree(mode12 , medpos). 
tightness _ degree(modeI3, highpos). 

time _ application(model j , highpos). 
time _ application(modeI2, lowpos). 
time _ application(modeI3, lowpos). 

point_of _application(model j , proximal). 
point_of _ application(modelz, proximal). 
point_ of_ application(mode13, distal). 
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Final states (Reached Conclusion) 
poison _ amount(modeI 1, highpos). 
poison _ amount(modeI2, lowpos). 
poison _amount(modeI3, highpos). 

The ILP program comparatively analyses this set, in order to induce 
new relationships between the parameters of the tourniquet and the a­
mount of poison in the heart. In this way, it can discover under which 
conditions a tourniquet effectively bars a poisoning process. The amount 
of poison in the heart is the lowest when a very tight tourniquet is applied 
after a very short time in proximal position. A not very tight tourniquet, 
however, can be effective if it is applied after a very short time, as is 
shown in the previous example (§ 4.3) .. 

The new relationships are expressed as general rules (containing 
variables instead of constants only). For example, the following rule 
states that a tourniquet applied in distal position does not act against the 
poisoning process - there is a great amount of poison in the heart -
whatever the values of the other parameters may be (Model is a variable, 
thus covering a class of specific models): 

poison _ amount(Model, tourniquet, highpos):­
application jJoint(Model, distal). 

(Inductive Rule) 

The base knowledge of the system is subject to the new rules. In this 
knowledge, the tourniquet is represented as a QPT action: 

tourniquet(T, Name, E) is_a action with 
. individuals: person(cleopatra) & vein(Name, E) 
and preconditions: alive & not_tourniquet 
and add list: 

dependency(linear, tot(E), tightness _ degreeC, X)) & 
influence(decrease, tot(T), widht(Name)) & 
yes_tourniquet 

and delete Jist: not_tourniquet. 

During the simulation phase, the QPT interpreter carries out the instruc­
tions reported in add_list and delete_list, if and only if the individuals and 
preconditions are verified. This corresponds to the fact that the tourniquet 
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decreases the width of the vein proportionally to its degree of tightness, 
when Cleopatra is alive and she has not yet been applied a tourniquet. 
For example, the discovery of the inductive rule above enriches the 
knowledge base about the application of a tourniquet; the new informa­
tion in inserted as a precondition: 

tourniquet(T, N arne, E) is _ a action with 
and preconditions: alive & not_tourniquet & 

point_of _ applicationC, proximal). 

In this way, during the analysis of new physical situations, the sys­
tem will immediately apply the tourniquet in a correct position without 
having to generate several models in order to find out effective points of 
application. 

5. Concluding remarks 

In conclusion, we take the position that the representation of the mental 
models theory within a computational framework - specifically in the 
context of qualitative reasoning about physical systems - leads to refine­
ments of the general theory and to a more precise distinction between 
different aspects ofa learning process. In fact, what is generally called 
induction in J ohnson-Laird has been differentiated into two phases. The 
first one is the generation by simulation of incremental models and the 
second one is the achievement of a revised and augmented knowledge by 
means of a constructive induction process applied to generated models. . 
We believe that the identification of the distinction between these phases 
and their interaction represent a new point of view in studying model 
revision, inductive analysis and learning in a cognitive perspective. 

As a possible future development of this line of work, we will inves­
tigate the recognition of new causal relations emerging from the induced 
knowledge. Additional further developments will single out some real life 
application domains, in order to validate the proposed approach. 

University of Milan 
Insubria University (Varese) 
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