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NOMINALISM AND CONVENTIONALISM
IN SOCIAL CONSTRUCTIVISM

Paul Ernest

1. Introduction

There are various forms of social constructivism in the social and human
sciences, especially in sociology (Berger and Luckmann 1966),
discursive psychology (Gergen 1999) and philosophy (Hacking 2001).
There are also variants in education and learning theory (Wertsch 1991),
in mathematics education (Weinberg and Gavelek 1987), and even in the
philosophy of mathematics (Hersh 1997). However, what is meant by the
use of the term here is that version of social constructivism as a
philosophy of mathematics given its fullest expression to date in my
eponymous book (Ernest 1998). To avoid cumbersome circumlocutions,
no reference will be made to the range of extant or possible variations or
alternatives, although it is not intended to assert the superiority or
supremacy of the singular version explicated here.   

Social Constructivism is put forward as a philosophy of
mathematics with the primary aim of offering an account of
mathematical practice, including also the social structuring and the
historical development of mathematics. It is a naturalistic philosophy and
so it has many elaborated characteristics relating to its descriptive and
social aspects. However although ontological and epistemological issues
are discussed in Ernest (1998), I wish to focus here on its relationships to
traditional ontological and epistemological positions in the philosophy of
mathematics. While social constructivism has been contrasted strongly
with Platonism and mathematical realism, on the one hand, and with
foundationalist and absolutist positions, on the other hand, here I wish to
elaborate its positive location in philosophical traditions.
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This paper cautiously describes social constructivism as
nominalist, with respect to ontology, and conventionalist with respect to
epistemology and the foundations of knowledge. The caution is due to
the particular variants or interpretations of nominalism and
conventionalism that are attributed to social constructivism, for there are
dominant traditions within each perspective with which social
constructivism is not identified or subsumed under. 

By asserting that the objects of mathematics are signs, rather than
purely psychological or mental entities (the claim of conceptualism),
material entities (the claim of materialism) or objective self-subsistent
entities (the claim of realism) what is espoused is claimed to be a variety
of nominalism. However, this differs from the most common forms of
nominalism, for it is based on a conception of sign that rejects the
representational theory of truth. Signs are part of a cultural realm that is
intersubjective. It transcends the perceptions and understanding of any
one individual but does not transcend the knowledge and practices of
humankind as a whole and thus does not belong to any extra-human
reality. Elsewhere I have termed this realm ‘objective’, but this requires a
new definition of the term, differing  from the received, traditional usage
and its ontological presuppositions (Ernest 1998).

The related claim that the concepts, terms, theorems, rules of proof
and logic, truths and theories of mathematics are socially constructed
cultural entities constitutes a form of conventionalism. However, what is
not asserted is that the concepts and truths of mathematics are the result
of arbitrary, whimsical or even ideologically motivated decisions and
choices. Many conventions in mathematics are not conscious decisions
but reflections of historical practices laid down for very good reasons.
Furthermore, where conscious decisions are made in mathematics they
are usually to complete or extend existing rules and practices within
mathematics that result in general, simple, elegant, practical and
consistent systems. As such, such choices although not actually forced or
necessary, for if so they would not be choices within the sense meant
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1 Wittgenstein (1953) uses a broader notion of choice in following a rule,

claiming that any rule following involves an agreement or decision, in the sense

that choosing to participate in a language game and form of life and maintain its

rules and conventions, such as respecting Modus Ponens in mathematical proof,

is always a matter of choice, not necessity. Without challenging this, the choices,

conventions and decisions I am referring to are those that come about when there

is no unequivocal and unambiguous already laid down rule to follow. Thus

William Hamilton in inventing, constructing and defining the system of

Quaternions chose to abnegate commutativity in the binary operation in his

system (i.j = -j.i ¹  j.i) to obtain the best system with the properties he sought,

although other options were open to him (Pickering 1995). This was not a

permitted move in the contemporary language games of algebra, and thus led to

the formation of new language games that have proved very fruitful in

mathematics. 

here, are nevertheless the choices that come closest to being required by
past traditions.1

2. Nominalism

Social constructivism is claimed to be a nominalist philosophy of
mathematics because it asserts that the objects of mathematics are signs.
I understand signs in the semiotic sense of having or being composed of
both a signifier, that which represents, often a material representation,
and a signified, the meaning represented. Thus unlike in Hilbert’s
formalism, the signs of mathematics are not just detached and empty
symbols (signifiers) but always have meanings (signifieds), even if
precisely specifying the characteristics and ontology of these entities is
difficult and complex, and may involve ambiguity and multiplicity.
Following Peirce’s seminal work in semiotics, as well as modern
semiotic philosophy (Eco 1984, Derrida 1978), these signifieds are
understood to be further signs. Although Peirce developed a complex
tripartite treatment of signs, he is unambiguous in asserting that “The
meaning of a representation can be nothing but a representation.” (Peirce
1931-58, Vol. 1, Section 339). In Peirce’s system the ‘interpretant’ of a
sign corresponds in many respects to the meaning or interpretation of a
sign.
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So there is an infinite regression here. Finally, the interpretant is

nothing but another representation to which the torch of truth is

handed along; and as representation, it has its interpretant again.

(Peirce 1931-58, Vol. 1, Section 339).

Although there is potentially an infinite regression in this theory,
this is no more a vicious circle than looking up meanings in a dictionary.
Ultimately the dictionary meaning of a word can only be given in terms
of relationships between other words and their meanings. So too, I claim,
the meanings or signifieds of virtually all signs in mathematics are
themselves further signs. I do not claim that every meaning is itself a sign
because I want to leave open two further possibilities: first, that
signifieds can be actions or operations on signs, and second, that they can
be tangible objects in the real world. I do not at this stage think that the
second case is relevant to mathematics, for if, for example, one points to
a set of three objects as an instance of the number three, in my view this
indicated plurality or set constitutes a sign itself, rather than just the
meaning of a sign. Indicating a set of tangible objects in effect makes it a
sign itself.

From a nominalistic perspective, it would not be possible to
consistently adopt any other definition of meanings except in terms of
other signs. For any other definition would swiftly lead out of a
nominalist theory into something else. If meanings were in general
located in the physical world, this would give rise to an empirical realist
ontology. If the meanings were located in some abstract realm, the
outcome would also be a realist ontology of some abstract sort, like
Platonism for example. Likewise meanings located in the mind would
give rise to a form of conceptualism. 

Thus the ontological position of social constructivism is
nominalism. The objects of mathematics are signs, and furthermore the
meanings of these signs are typically yet further signs. However, as
indicated above, this is not to say that all that exists in mathematics is
signs. There are in addition sign related activities: idealized human
action on signs. Thus the numeral ‘3’ connotes both the act of
establishing a one-to-one correspondence with prototypical triplet set
(cardinality), and the act of enumerating a triplet set (ordinality). Each of
these connotations presupposes some elements of threeness, requiring the
use of a representative triplet set. But the explicit definition of 3 as the
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2 This is related to the need for premature closure noted and defined by Collis

(1975). It represents the empirically noted desire of children in the early stages of

learning mathematics to achieve syntactical simplicity by deriving a single

answer in working a mathematical task. 

3 Indeed Piaget (1952) had the prescience to identify the stage of being able to

reverse informal mathematical and logical operations as a crucial step in the

development of children’s mathematical thinking. The achievement of Invariance

in this sense signals the transition to the stage of Concrete Operations. 

successor of 2 does not. Formally this definition can be represented as  3
=def S2, where S is the one place operation of successor, a primitive in the
theory of Peano arithmetic. Although this identity asserts a static
relationship, it contains an operation, namely that of applying the
successor operation to 2. Traditionally mathematics is understood as
timeless, since the idealized act of transforming 2 into its successor S2
(commonly named ‘3’) is reported after the idealized act, with no
temporal framework. Nevertheless, the admission and representation of
change signifies an abstracted and idealized analogue or counterpart to
time. Of course the idealized analogue of time admitted in mathematics
differs in one major respect from time in its usual sense, it is reversible.
S-13 = 2, just as truly as S2 = 3, where S-1 denotes the inverse operation
of S (the predecessor operation). 

In learning the meaning of the equals sign (=) children usually first
understand it as a sign of sequential transformation (see, e.g., Kieren
1992). So  2+3 = 5 is read as 2 added to 3 makes 5, in which the equals
sign signifies the move to the end product of an operation. Consequently,
initially children often have difficulty in grasping its symmetric form 5 =
2+3 since this is not easily understood in these terms.2 A necessary step
in the successful learning of mathematics is to grasp the symmetric
property of equality, as well as its reflexivity and transitivity. Likewise,
these three properties must also be understood to apply to the analogous
relation of logical equivalence that applies to formula and sentence pairs.
Thus developing an understanding of the signs of mathematics involves
abstracting from the time sequential feature of operations, because of the
abstract and timeless character of the signified space of mathematical
operations and objects.3 Of course the signs of mathematics are nuanced
enough in their meanings so that potentially irreversible sequences of
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operations can be represented too, through both ordered relations on
terms and formulas (using, e.g.,  >  and à , respectively) and reductions
in complexity of terms and formulas (using, e.g., substitutivity of terms).
The spaces of transformations of mathematical signs can have both
abelian and non-abelian group-like properties (although in most case they
do not strictly speaking form a group). 

The discussion of this very simple example begins to illustrate
some of the richness and complexity of mathematical signs and their
meanings, understood semiotically and nominalistically. There are signs,
sign rules, and meanings for both signs and their rules. Furthermore these
meanings occur in two forms, first as agreed by the mathematical and
educational communities (shared or conventional meanings), as well as
learners’ own developing and sometimes idiosyncratic interpretations of
them. 

To understand even a part of a simple mathematical topic involves
mastering a complex set of inter-relationships between signs, sign rules,
and sign meanings, which themselves embody complex relationships
between yet further signs and rules of sign use. Thus the nominalistic
claims of social constructivism are not purely theoretical, but also
describe some of the dimensions of coming to know and understand in
mathematics, that are presupposed if not always acknowledged by
mathematicians and successful users of the subject. 

Azzouni (1994) distinguishes two forms of nominalism. The first
form simply denies that there are abstract mathematical objects. This
form leads to a variety of problems. As Quine (1953, 1969) has argued,
allowing quantifiers to range over classes of mathematical objects, such
as sets or numbers, and then denying that these objects exist, is
problematic. To be carried through consistently this position leads to
cumbersome circumlocutions in which the objects are used but then
defined away, as mere façons de parler in place of complex and multi-
layered definitions. This is not the nominalist position of social
constructivism. 

The second form of nominalism does not deny that mathematical
objects exist, but instead concerns “the identification of them with some
of the notation supposedly referring to them” (Azzouni 1994: 47). This
more or less corresponds with the position adopted here. Azzouni goes
on to call this ‘nominalism on the cheap’ because it avoids the complex
or in his metaphor, costly, circumlocutions of the first form. He makes a
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4 My cautious phrasing is because in social theories of mind the personal need not

be identified with the psychological. See, for example, Harré and Gillett (1994)

Vygotsky (1978) and W ertsch (1997).

final telling remark which draws him close to the ontological position of
social constructivism: “mathematical objects are posits, and posits are
not, strictly speaking, independent of their positors.” (Azzouni 1994:
214; original emphasis throughout). 

Likewise, the nominalist position adopted here is that
mathematical objects are the meanings of signs, themselves signs or
actions and operations upon them. But then this raises the further
problem of what signs are and in what space they are to be found. As the
previous quotation suggests, the social constructivist position is that they
are humanly made posits, but this of itself does not clarify their ontology.
A useful starting point for classifying spaces or domains of existence is
Popper’s (1979) 3 worlds, the physical, mental and objective. While I do
not subscribe to any absolute tripartite division such as this, it provides a
useful framework for discussing signs and knowledge that captures many
of the traditional and still widespread notions of ontology.

As signs, the objects of mathematics do not fall neatly into any one
of Popper’s 3 worlds. World 1 is the material and physical world. Signs
have material representations in this domain, and cannot exist without
them, but they are more than these representations. For example two
utterances of the same sign each have unique material representations
and yet are representations of the same sign. The relation of identity that
holds between them, and a fortiori between any two tokens of the same
type, is not materially present except as represented in a third possibly
unwritten sign. At the next higher level of abstraction, two apparently
identical signs in different contexts often will have different meanings.
Thus there is more to a sign than its mere material representations. There
are also relationships between signs manifested as human understandings
and rules of sign use.

World 2 is the mental or psychological world. Signs undoubtedly
give rise to personal meanings which some might wish to locate in this
world.4 But if meanings were solely located here there would be
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5 This is a key problem for versions of Intuitionism that claim that the objects of

mathematics are personal concepts, but that different person making individual

acts of construction arrive at identical concepts.

problems with communication and agreement.5 Wittgenstein (1953), in
his Private language argument, makes the case that we do not and cannot
have private languages that refer to our private sensations and
experiences. Languages are primarily public, as they are deployed and
developed in social language games, which are part of shared forms of
life. Only after we begin to acquire mastery of language through public
use and performance do we internalize and appropriate them to our
personal world of meanings.

World 3 is the objective world of concepts, meanings, problems,
knowledge, etc. The positing of this world as the repository of objective
meanings and the objects of mathematics provides the basis for realism
and Platonism. This is an elegant and self-consistent family of
ontological positions that has satisfied scholars from Plato to Frege,
Gödel, and Popper, as well as most mathematicians and philosophers of
mathematics. Part of its appeal is that it accommodates the undeniably
objective and impersonal aspects of mathematics so much better than
Empiricism and Conceptualism. 

The social constructivist solution is to adopt World 3 as a domain
of objective knowledge, but to redefine it as social and cultural.  This is
to adopt, at least in part, the social theory of objectivity proposed by
Bloor (1984), Harding (1986), Fuller (1988) and others.

What I mean by saying that objectivity is social is that the

impersonal and stable character that attaches to some of our

beliefs, and the sense of reality that attaches to their reference,

derives from these beliefs being social institutions. (Bloor 1984:

229).

Bloor argues that Popper’s world 3 can defensibly and fruitfully be
identified with the social world. He also argues that not only is the three-
fold structure of Popper’s ontology preserved under this transformation,
but so are the connections between the three worlds. However, this social
interpretation does not preserve Popper’s meaning for objectivity,
although it accounts for most features of objectivity: the autonomy of
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objective knowledge, its external thing-like character, and its
independence from any knowing subject’s subjective knowledge. 

Applying this to the objects of mathematics, the claim is that these
objects are signs and their operations. Signs and sign operations have
material representations (World 1 manifestation), they give rise to and
evoke meanings in people (World 2 manifestation), but they are social
institutions (World 3 manifestation). Signs and their operations are social
institutions because they rest on shared functions, rules and agreements
and these govern their uses and shared meanings. Sign usage and
meanings are both learned and validated in public, in Wittgensteinian
terms, in language games situated in social forms of life. However, the
public rules and agreements underpinning the use of signs are not all
explicit. Some of them are tacit, embedded in custom and accepted
practices, and acquired implicitly through social participation in
language games. A good analogy, although it is a special case, is the
learning of the rules of grammar through participation in linguistic
practice. Many grammatical speakers cannot explicitly state the rules of
grammar. Rather they have induced them, as if by osmosis, from the
patterns of accepted (and criticized) language use they have experienced
as speakers and listeners. Consequently, they have learned them
implicitly as patterns that guide the production and reception of speech,
and similarly, of written expressions. 

Unlike written alphabetic language, mathematical signs are not
simply constructed to express or tell a story, with superfluities and
decorations and the possibility of many substitutions of words or the
addition of phrases or sentences. Mathematical signs are closely worked
in transformational sequences to express operations on signs, be they
primarily calculations or proofs. To fulfill these roles, satisfy the
underlying rules, and correctly express the compound operations
involved, there are very tight constraints on the selection and uses of
signs. Each sign must be justifiably linked through rule applications to its
predecessors and its successors in the sequence of signs that constitutes a
calculation or proof. Such rule applications ensure that there is a
continuity and preservation of meaning, such as numerical value or truth
value, throughout the length of the sign sequence. Above all, a sequence
of mathematical signs is goal directed, it is intended to end with a
calculated value or proved theorem. 
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6 Phonetic language also poin ts to the world of human vocal sounds, but this is

irrelevant here. 

The meanings underlying mathematical signs, themselves signs,
are the objects of mathematics, in the case of terms, or statements of
relationships between the objects of mathematics, in the case of formulas
and sentences. There is no other realm of objects to which the language
of mathematics signs points. The analogy with alphabetic language fails,
for the latter points to the lived world of human beings, as well as their
imagined worlds, although it too can point to the world of signs.6

Like mathematics itself, signs are objective, they transcend the
individual and are owned and created by humankind. Individuals may
partake of either, and can add a little bit to the uses of either that may, if
adopted more generally, be incorporated into the larger pattern owned by
humankind. This parallel, I claim is not a coincidence. The worlds of
mathematics and signs are so similar because they are the same in certain
respects, in that the objects of mathematics are signs. Of course the
converse does not hold, because there are non-mathematical signs such
as street signs, medical symptoms, paintings and novels.

The relationship between human beings and the cultural and social
worlds of signs and, a fortiori, of mathematics is not a symmetric one.
Focusing on mathematics alone, it can uncontroversially be stated that
mathematics is much larger than any one person or group of persons. For
although individuals and groups can make even large contributions that
become accepted into mathematics by common consent, such
contributions are always tiny when viewed against the notional totality of
the discipline that has evolved over the past 5000 years. In learning
mathematics, that is appropriating some of its sign and meaning systems,
no-one can take on board the totality. In making mathematics, the novel
sign uses, patterns and meanings will always be a small addition in
comparison to that which was appropriated. The enduring vastness of the
discipline gives it its objectivity and external thing-like character. 

One of the dangers of Popper’s (1979) tripartite ontology is that it
splits human action into three separated realms, and this inevitably has an
impact on the interpretation of signs. Clearly human beings have a
physical and material basis, and their mental activities, I would argue, are
inseparable from this basis. But they are also social and hence are both
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constituted by their relationship with signs, culture and knowledge, as
well as creating these inhabitants of World 3. Furthermore, the
relationship between these three worlds is not static, but a dynamic and
interpenetrating functional dance or conversation. That is, they all run
together seamlessly in the world, including all activities, such as, for
example, me the writer writing this text and you the reader reading it. 

Signs are thus not static objects, but functions and tools that are
continuously at work, used by human beings in their communicative and
other practices. Thus when I claim that mathematical objects are
operations on signs and sign functions as well as the signs themselves,
this is not an optional add on. Signs only have meaning within the nexus
of human sign related activities. 

In his analysis of the semiotics of mathematics Rotman (1994)
distinguishes several categories of mathematical signs. First he
distinguishes the alphabetic from the numeric (or mathematical) sign.
Numeric signs are further analysed into the ideogrammatic and the
diagrammatic. Ideograms include numerals, =, +, and so on, signs that
can be inserted within the one dimensional flow of alphabetic signs.
Diagrammatic signs are complex, relational, and typically cannot be
inserted in the one dimensional flow of alphabetic signs, as they are multi
dimensional. To use such signs in mathematical texts requires a break in
the alphabetic flow. Although the origin of such breaks lies in ancient
mathematical and scientific texts, we now take for granted the insertion
of tables, figures, diagrams, etc., in texts of all sorts. Indeed, in
hypertexts even videos and links to other texts are inserted in this way.

Rotman does not use the dimensional distinction applied here.
However, Lemke (2003) distinguishes typological versus topological
semiosis in mathematics, which loosely corresponds to the alphanumeric
versus diagrammatic distinction in Rotman, and invites the dimensional
distinction.

Rotman, Lemke and others argue for the necessity and
irreducibility of the diagrammatic and topological modes of semiosis in
mathematics. This provides an argument against Logicism. For if
mathematics could be reduced to logic, then the diagrammatic would be
dispensable in mathematics. For despite Frege’s (1879) two dimensional
Concept Writing, mathematical logic is expressible alphanumerically,
that is in terms of alphabetic and ideogrammatic symbols. Mathematical
logic could be expanded to accommodate the diagrammatic signs of
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7 I have to be careful what I assert here, because the diagrammatic and

topological modes are representable in terms of the alphanumeric and the

typological, just as pictures can be digitized. This follows from Descartes’

groundbreaking linking of algebra and geometry. However in making such

translations and reductions a human faculty of knowing is eliminated. We have

both spatio-visual and logico-linguistic modes of knowing (often identified with

right and left brain hemisphere activities), and the elimination of one in  favour of

the other loses some of the balance, complementarity and power of our thought.

The fact that all knowledge can be represented in binary code does not mean that

human knowing is enhanced by actually representing all knowledge this way.

Such reductions threaten or even destroy meaning and understandability.   

mathematics, but this contradicts the claims of Logicism. Namely, that
the concepts of mathematics can be defined in purely logical terms and
the theorems of mathematics can be derived solely from logical axioms.
But diagrammatic signs are not a part of modern mathematical logic. If
the diagrammatic and topological modes are ineliminable in
mathematics, then mathematics cannot be reduced to logic. Logicism has
already failed to establish its second claim in that the theorems of
mathematics cannot be derived from purely logical axioms. However,
this argument means that Logicism has also failed to establish its first
claim in that the concepts and signs of mathematics cannot be defined in
purely logical terms.7

Overall, what I am claiming is that the objects of mathematics are
to be found in the domain of mathematical signs. Mathematical objects
as are not only named by signs but are also brought into being through
sign functioning. Each mathematical theory as it is defined opens up a
domain of mathematical discourse, and this domain is populated by
mathematical signs, the objects of mathematics. On a metalinguistic level
these theories themselves are mathematical objects too. Within
mathematical theories definitions bring new objects of mathematics into
being, and the permitted modes of definition are strictly regulated. For
example, in Peano arithmetic ‘+’ is defined inductively, that is by means
of the induction axiom. Typically, this definition is as follows: ‘+’ is a
binary operation defined on the set of natural numbers, so that for all
natural numbers x, x+0 = x and x+Sn = S(x+n). This definition creates
the addition operation on N, and although it is not explicitly defined so
that it can be eliminated in terms of its definiens in a single linguistic
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move, the definition is primitive recursive and hence constructive. That
is, by iterative substitutions x+n is equivalently transformed into
SS…Sx, the successor of x repeated n times. At each stage the
substitution is explicitly defined, and there is an initially given limit to
the number of substitutions required. 

What even this very simple example illustrates is how
mathematical objects are mathematical processes or their end products.
In the words of Machover (1983) mathematical objects are reified
constructions, that is they are the reification or nominalisation of
constructive procedures and processes. That is the operations on
mathematical objects themselves become mathematical objects but at the
next higher level of abstraction or definition. This is reflected in the
mathematically primordial transition from ordinal counting and numbers
to cardinal numbers, but it is also reflected at every level in mathematics
as new objects are defined in terms of old. Not every definition involves
a reification, unless one counts the collecting together objects to form a
finite set. (Evidently forming an infinite set does involve a reification).
However, unlike Machover I do not limit the domain of meaningful
constructions to those acceptable to constructivists or Intuitionists. 

From a semiotic perspective, forming a completed infinite set is no
more objectionable in principle than forming a finite one, even though
the constructive processes involved cannot be completed before the
reification into a new object. Rotman (1993) in his groundbreaking
semiotic theory and philosophy of mathematics has qualms about
admitting unfinishable imaginary actions on mathematical signs. But my
view is that in the virtual reality of mathematical signs and objects,
provided our sign practices are consistent and conservative of the
underlying meanings, no types of actions on signs need be ruled out ab
initio. Evidently part of the strength of mathematical sign systems is that
they can incorporate infinities and unfinishable procedures and actions,
because they are purely semiotic systems. They are not constrained by
the finiteness of matter, energy limitations and entropy we accept of the
physical world.

It might be objected that the semiotic interpretation of
mathematical objects as signs that I have sketched is not a form of
nominalism, but a version of mathematical realism or some other
doctrine. For I do not reject or deny the existence of abstract
mathematical objects, but locate them in the cultural and discursive
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domain of semiotics. But traditional philosophy typically ‘looks through’
language to find the domain of objects to which it refers, analogous to
the correspondence theory of truth or the picture theory of meaning. I am
asserting that there is no other reality in which to find the objects of
mathematics other than the domain of mathematical signs and their uses
and functions in the domain of discourse. This certainly preserves many
of the properties of mathematical realism and Platonism, just as the
social interpretation of objectivity preserves properties of Popper’s
World 3. Since nominalism is the doctrine that the objects of
mathematics are just names, or more generally signs, this seems closest
to the spirit of a semiotic, social constructivist philosophy of
mathematics. However, if nominalism is understood to mean a position
that denies the existence of abstract mathematical objects such as
numbers and sets in any respect, this is not the position adopted here. 

Putnam (1972) characterizes nominalistic language as formalized
languages whose variables range only over individual things, and whose
predicates stand only for adjectives and verbs applied to individual
things. Such languages cannot make reference to numbers, sets or other
abstract objects in any respect. He criticizes such language as inadequate
for either mathematics or science. By implication, this is a critique of any
strong version of nominalism that restricts itself to nominalistic
languages. This is clearly not the version of nominalism I am endorsing
here, which is supposed to support and recognise existing mathematical
practice, which clearly involves the abstract objects of mathematics,
rather than restricting it or requiring its reform. The nominalism adopted
here is supposed to address the issue of what these objects are, and where
they are to be found, rather than to try to define them away.

Burgess (1983) argues against all forms of nominalism, which he
characterizes into three types: instrumentalist, hermeneutic and
revolutionary nominalism. Each of these relates to the role of abstract
mathematical objects in science. Instrumentalist nominalists adopt an
instrumental philosophy of science, hermeneutic nominalists argue that
on linguistic analysis the need for abstract mathematical objects like
numbers is eliminable, and revolutionary nominalists claim that a new
kind of science is possible in which no existential claims about abstract
mathematical objects are made. Burgess criticizes and rejects each of
these three positions, beginning with instrumentalism. This ends up, he
argues, through rejecting the truth of scientific theories leading to the



NOMINA LISM AND  CONVEN TIONALISM 21

rejection of common sense beliefs as well. In addition, he doubts whether
it is possible to truly disbelieve scientific theories that make reference to
mathematical objects. But the position I wish to support here is precisely
the instrumentalist one he rejects, although by no means expressed in his
terms. Social constructivism is instrumentalist about mathematics,
science, language, and all of human cultural creations. To assert this
requires me to anticipate the conventionalism I endorse in the next
section. Namely, that our intellectual creations are shared and jointly
created conceptual tools for understanding and operating in the physical,
social and cultural worlds we inhabit. 

My interpretation of Wittgenstein supports the semiotic versions of
nominalism espoused here. For as Wittgenstein asks: 

Is it already mathematical alchemy, that mathematical propositions

are regarded as statements about mathematical objects - and

mathematics as the exploration of these objects? In a certain sense

it is not possible to appeal to the meaning of the signs in

mathematics, just because it is only mathematics that give them

their meaning. (Wittgenstein 1978: 99)

Wittgenstein suggests that we need to look within mathematics itself for
the meaning of the signs of mathematics, and to project them outward
into some realist or Platonist domain of mathematical objects is a
delusion brought about by our linguistic habits.

Although the version of nominalism I am espousing here has not
received much attention in either the philosophy of mathematics or in
philosophy in general, it offers a number of explanatory benefits. First of
all, it opens the door to an evolutionary epistemology and genetic
epistemology approach for understanding mathematics. Mathematical
signs, terms, concepts, and theories have grown more complex and
elaborate over the course of 5000 years of recorded history, and so too
has the range of abstract entities signified by mathematics.
Understanding mathematical objects nominalistically in terms of signs
and sign use explains how the realm of abstract objects of mathematics
can have grown with the course of history. If the objects of mathematics
are already pre-existent in an objective realm it seems strange that we
perceive them and relate to them only when we are able to construct
them.
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8 The creations of mathematics are free in a strictly regulated and restricted sense

that except in exceptional cases conserves existing meanings, rules and

structures. 

Secondly, persons from school children to adult mathematicians
have access to a varying and developmentally growing range of signs,
rules and meanings. The mastery of signs and their rules and meanings is
central to all communicative activity, so it is not surprising that it is
central to mathematical understanding too. To view mathematical objects
as existing in some objective realm beyond the grasp of our actions just
seems less plausible than locating it in our communicative practices.

These are not very persuasive arguments to someone who rejects
nominalism as described here. But they do represent benefits to someone
open to the possibility of this means of accounting for mathematical
objects in that they allow the resultant philosophy of mathematics to fit
together with historical and developmental (psychological) accounts of
mathematics to give a coherent overall view of the field.

3. Conventionalism

Conventionalism has been described as “the view that a priori truths,
logical axioms, or scientific laws have no absolute validity but are
disguised conventions representing one of a number of possible
alternatives”. (Norton 1997: 121)

This captures one of the key claims of social constructivism,
namely that the concepts, axioms, truths, theorems, theories and
standards of mathematics have no absolute validity but represent one set
of choices or possibilities out of a number of possible or imaginable
alternatives. This is not to critique or denigrate the excellently fruitful
and valuable choices that we inherit from history, or elaborate in
contemporary mathematics. Far from it, the choices and their outcome,
the discipline of mathematics, represent one of the pinnacles of creative
flowering of the human spirit. As free creations of humanity, rather than
something pre-existing forced upon us by inevitable necessity, the ideas
and results of mathematics are all the more remarkable for their beauty
and elegance, yet powerful generality and practical utility.8 Thus, the
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9 Once again I am putting aside Wittgenstein’s (1953) notion that all rule

following is optional, discussed  in Note 1. 

claim that I am making is that mathematics rests on human conventions,
choices and historical practices in a way that I shall elaborate.   

There is a conventionalist tradition in the philosophy of
mathematics which acknowledges conventions, fundamentally social
agreements of one sort or another, as providing the basis for logical and
mathematical proof and truth. Elements of a conventionalist philosophy
of mathematics are to be found in Poincaré (1905), who asserts that
certain geometrical hypotheses are freely but not arbitrarily adopted
conventions. Similar elements are also to be found in Ajdukiewicz, who
termed himself a radical conventionalist, and argued that the linguistic
basis of knowledge significantly determines its content (Giedymin 1982).
Logical empiricists such as Carnap, Hempel, Nagel, and philosophers
such as Ayer, Quine, as well as others, espouse versions of
conventionalism. 

There are different forms of conventionalism, which hinge on
different interpretations of the concept of convention. Fuller (1988)
makes a key distinction between two senses of the term. First, there is the
more artificial sense of convention as an explicit agreement on a
definition, assumption or a rule. This might be termed a rational
convention. The standard versions of conventionalism in the philosophy
of mathematics referred above adopt this sense and propose in one way
or another that the conventions on which mathematics rests, i.e., the
foundations of mathematics, are chosen for pragmatic reasons. This is
closely related to instrumentalism, in which theories are tools chosen to
serve specific purposes. 

According to what might be termed rational conventionalism, the
body of mathematical knowledge, the superstructure, follows by logical
means, i.e., proofs, from its conventional basis. In the extreme form
which Dummett (1959) termed ‘full-blooded’ conventionalism and
incorrectly attributes to Wittgenstein, there is no base-superstructure
division and all mathematical knowledge is directly adopted by
convention. This latter position is untenable, given the universally
acknowledged importance of inference in establishing mathematical
knowledge, and no philosophers subscribe to it.9 



PAUL ERNEST24

Fuller’s (1988: 56) second sense of convention is “a practice that
has emerged largely without design yet continues to be maintained”.
Convention in this sense is close to what is implied by participation in
Wittgensteinian language games and forms of life, and in Foucault’s
‘discursive practices’. For to participate in a form of life and its language
games is to follow the roles and norms and engage in the expected
practices, i.e., to observe the conventions of the form of life. This sense
of convention is at least partly implicit, since usually no explicit
statement of the conventions will be made, rather participants must infer
the conventions from observed behaviours and from others’ corrections
of their own infractions. This might be termed historical convention,
since it is based on pre-existing practices. The previous discussion of the
role of grammar in language use fits with this conception. In simple
terms historical conventions follow practice rather than preceding it, as
they do in rational conventions.    

Let me now clarify what conventionalism means in terms of
epistemology. Social constructivism claims that knowledge and truth are
socially constructed. What does this mean? Does it mean that any
collection of signs, representations or information making claims about
states of affairs ‘constructed socially’ is equally true? Certainly not, for
this would be patently absurd and would lead to the production of
contradictions, as when the State of Indiana legislated 22/7 for the value
of Pi. Does this claim mean that any historic group reaching agreement
about a state of affairs has the right to call its claims true or established
knowledge? Here I must agree with Goldman (1995: 1) that “truth must
not be equated with consensual belief”. For if this criterion was admitted,
we would have to acknowledge false and pernicious claims as the truth.
For example, the Ku Klux Klan agrees that black persons are inferior to
white persons in a number of specifiable ways. Similarly the Nazi’s
propounded the doctrine of the inferiority of the Jews. The key point here
is that such groups had a widespread internal agreement, but that this
agreement did not make the claims true. Their dogmas are unfounded
claims that social constructivists along with other liberal or humane
thinkers reject as pernicious lies. But this raises the question of how else
truth is socially constructed.  

Truth is not equated with consensual belief. It is not simply created
by fiat, agreement, or convention. Instead, truth claims are subjected to
criteria for acceptance. Truth claims need to be warranted by something
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10 There are technical issues surrounding the relationship between truth and proof

in mathematics foregrounded by Gödel’s (1931) seminal incompleteness

theorems that for simplicity I shall overlook here but that do not invalidate my

argument.

other than simply group agreement for acceptance. In mathematics, a new
knowledge claim, a would-be theorem or new result, must be put forward
with a proposed warrant for the claim, that is, with a proof. The proof is
an argument that is persuasive in establishing the truth, or rather the
proven nature of the claim, to experts in the field.10 The criteria for the
acceptance of new theorems do not exist independently of humankind,
however, for it requires a group of experts to deploy them. In addition,
the criteria are not fully explicit, and I would argue, cannot be rendered
fully explicit (Ernest 1999). For they depend in part on the experience
and case knowledge of accepted results in mathematics of these experts.
Experts serving as journal and conference referees, for it is in such roles
that mathematicians act as gatekeepers for the admission of new
mathematical knowledge, are not always unanimous, nor even always
correct in their judgements, in the eyes of history. But it is through the
application of criteria and standards of logic, mathematical practice and
rhetorical form that new results are warranted in mathematics (Ernest
1998). It is these second order criteria and standards that represent a
central part of the conventional basis of mathematical knowledge.
Communities of mathematicians agree on these criteria and standards,
not arbitrarily, by rational conventions, but by historical conventions
embedded in historical practice. Thus an accepted mathematical result
has a persuasive warrant, a proof, that satisfies the appropriate group of
experienced mathematicians that it meets current proof standards. 

However, the second order criteria and standards for the
acceptability of mathematical knowledge are themselves historical
conventions, developed organically and historically in communities of
mathematicians and transmitted from one generation to the next partially
through written criteria and partially through shared meanings and
mathematical practices. The vertical variations in such criteria (i.e., over
time) are clear, and I claim, cannot be explained by the pushing back of
the frontiers of ignorance. What is less commonly acknowledged is the
extent of the horizontal variations in such criteria (i.e., over different
mathematical specialisms). In one of the few relevant studies Knuth
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11 It is also typically maintained by powerful social structures and institutions.

(1985) found wide divergences in the style and rhetorical form of papers
in different mathematical topics implying widely varying criteria of
acceptance in play. The criteria for acceptance of mathematical results
thus vary greatly over time and specialism, and represent accepted
historical conventions in place in the different communities of
mathematicians involved. 

In my view another important factor is also at work. For I claim
that there is also a mathematical metaphysics or ideology that sits in
place alongside these varying conventions and practices. This asserts the
objectivity, universality and certainty of mathematics and its standards
and basis. In consequence, mathematicians disregard the variations in
conventions, standards and practices of acceptability in mathematics.
Instead they see these differences as surface effects that mask an
underlying constancy and permanent core of meaning, objectivity and
truth. 

Foucault’s (1980, 1984) concept of a ‘regime of truth’ concerns
the historical truth-status of a socially accepted model, perspective or
world-view. When for historical reasons important sectors of a
community or society have come to accept such a perspective, and act as
if it is true, then a ‘regime of truth’ prevails. A regime of truth does not
concern individually warranted propositions, but an overall metaphysical
world-view. Such a perspective may seem as well grounded as a
foundationalist account of knowledge, but the basis of such truths is the
social acceptance and lived nature of the underlying presuppositions. A
regime of truth is hegemonic, and it is held in place by a discursive
practice, a set of language games embedded in a form of life, parallel to
Wittgenstein’s notions.11

The metaphysics of mathematics that sees the results of
mathematics and the criteria for their acceptance as certain, unchanging
and timeless is such a regime of truth. It is a widely shared world-view
that overlooks empirical evidence that contradicts it, or explains it away
as insignificant. An apparent weakness in this account is that it sounds as
if persons have been fooled or even coerced into accepting error or a
false account. But a regime of truth enables people to see what is as what
has to be; to identify historically grounded but contingent truths, not



NOMINA LISM AND  CONVEN TIONALISM 27

errors, as necessary truths. According to conventionalism, all knowledge
presuppositions are the results of different forms of accepted practices,
agreement or decision and can all be questioned and reconsidered. Even
the fundamental Law of (Non)Contradiction is put aside in a limited way
in some modern logics (Routley et al. 1982). Mostly the unquestioned
basic assumptions in mathematics are an important given, the basis for
mathematical research, and certainly this for mathematical applications
and education. But sometimes these unquestioned assumptions serve not
as buttresses for the certainty and usefulness of mathematics but as
epistemological obstacles to further progress. The example of Hamilton’s
difficulties in questioning the universal applicability of commutativity in
algebra, and how this was an obstacle to further progress, is discussed
below.

A crucial problem for a conventionalist philosophy of mathematics
is to account for mathematical and logical necessity and the certainty of
mathematical truths and theorems. Wittgenstein offers an approach to
this problem in his later philosophy. Wittgenstein’s view of logical and
mathematical necessity comes out of his theory of language games. His
view is that necessity, such as that of drawing an inference following the
laws of deductive logic, which underpins so much of mathematical
knowledge, arises from the human agreement in following a rule that is
stipulated, presupposed and embedded in a language game.

The word ‘agreement’ and the word ‘rule’ are related  to one

another, they are cousins. If I teach anyone the use of the one word,

he learns the use of the other word with it.  (Wittgenstein 1953: 86)

Thus there is no extra-human or objective force that compels
anyone to follow a logical rule or to accept the conclusion of a logical
deduction. It is rather that participating in certain language games entails
accepting certain rules. If one rejects the rule one is repudiating the game
as it is understood and played by others. “To obey a rule, to make a
report, to give an order, to play a game of chess, are customs (uses,
institutions).” (Wittgenstein 1953: 81)

Of course the traditional view that logical necessity underpins
deduction and rational thought is very firmly entrenched. Wittgenstein
anticipates the obvious philosophical objection that rule following in
logic and elsewhere stems not from human agreement and but from some
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essential form of logical necessity, whatever that might be. But even to
communicate disagreements about truth, falsity or necessity presupposes
that we agree to use the terms comparably in social discourse and life.

“So you are saying that human agreement decides what is true and

what is false?” - It is what human beings say that is true and false;

they agree in the language they use. That is not agreement in

opinions but in forms of life.  (Wittgenstein 1953: 88).

Agreement in Wittgenstein’s sense arises from our participating in shared
language games (woven into our forms of life), and does not consist of
arbitrarily adopting conventions. This gives us the shared constraints on
the meanings of our language, and ultimately leads us to decide what
counts as truth and falsehood. Thus the relation among agreement,
convention and truth is far more subtle and complex in Wittgenstein’s
philosophy than in rational conventionalism.

An example, not from Wittgenstein, is as follows. The traditional
view of philosophy and logic is that the following logical inference is
necessary without qualification: given A and A®B, then B. My
understanding of Wittgenstein’s position on this is as follows. Agreeing
that this inference is necessary depends on many prior implicit
agreements. First of all, the parties to the agreement must all share an
understanding of a sophisticated language, written English in this case.
This in turn presupposes that the parties are part of a linguistic
community and routinely communicate, interact with others and take part
in shared social activities. Secondly, the parties (to the agreement) must
agree that ‘A’ and ‘B’ are metalinguistic symbols denoting fixed but
arbitrary English propositions, and that every instance of one of them has
the same denotation (within an assumed but delimited meaning context).
Third, the parties accept the rule of inference Modus Ponens as valid
(i.e., whenever its premises have the truth as their value, they agree that
invariably the conclusion does too.) 

Although not an exhaustive analysis, these assumptions show that
the logical necessity of the inference depends on shared forms of life
(assumption 1) and participation in language games (assumptions 1, 2
and 3). Once these assumptions are made (and most of them you the
reader and I the writer as participating members of modern literate and



NOMINA LISM AND  CONVEN TIONALISM 29

12 But note that for philosophical discussion purposes we might temporarily

suspend belief in these or any assumptions, i.e., choose to play a different

language game.  

academic society have usually no option but to make12) then the
conclusion is necessary. Likewise, given another, simpler set of
assumptions about the game of Chess, and a particular board
configuration, check-mate in two moves is similarly necessary.

Mathematics is the subject par excellence, in which necessity
abounds. Once certain assumptions, definitions and rules are accepted
the greater part of mathematics does follow by logical inference, i.e., by
necessity. But that necessity rests on a set of assumptions that I claim are
not themselves necessary in totality. Some crucial elements of
mathematical knowledge are contingent truths, handed down from past
practice and convention, and consequently the body of mathematical
knowledge as a whole is contingent truth. 

The social constructivist position is that there is a great deal of
stability in a discipline like mathematics while at the same time there are
virtually no essential or necessary features handed on down through the
millennia. Mathematicians often contrast necessity with arbitrariness,
and implicitly argue that if mathematics has no absolute necessity and
essential characteristics to it, then it must be arbitrary, and consequently
anarchy prevails and anything goes. However as Rorty (1991) has made
clear in philosophy, contingency, not arbitrariness, is the opposite of
necessity. Since to be arbitrary is to be determined by or arising from
whim or caprice rather than judgement or reason, the opposite of this
notion is that of being selected or chosen. I wish to argue that
mathematical knowledge is based on both contingency, due to socio-
historical accident, and deliberate choice by mathematicians, which is
elaborated through extensive reasoning and practices into mathematical
tradition. Both contingency and selection are active throughout the long
history of mathematics. I also wish to argue that the adoption of certain
rules of reasoning and consistency in mathematics mean that much of
mathematics follows without further choice or accident, by logical
necessity, provided we maintain the rules and conventions. 

I freely admit that much of mathematics follows by logical
necessity from its assumptions and adopted rules of reasoning. However
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this does not contradict the conventionalist and anti-absolutist position of
social constructivism, for I deny that the rules, reasoning and logical
necessity in mathematics are absolute or context-independent.
Mathematics consists of language games with very entrenched rules and
patterns that are very stable and enduring, but which always remain open
to the possibility of change, and in the long term, do change as a totality,
if not in every part.

A well known example is commutativity in the multiplication of
numbers, so that jk = kj. The 19th century mathematician George Peacock
framed a law, The Principle of the Equivalence of Permanent Forms, that
stated that developments in algebra must always respect the underlying
arithmetical laws. Thus non-commutativity was virtually unthinkable.
Not because of Peacock’s dictum, but because of the underlying stable
practice that he reflected in his explicit statement. But it was a
convention, not a logical necessity. After 20 years of struggle to extend
imaginary numbers William Hamilton made breakthrough by rejecting jk
= kj, and putting  jk = -kj  instead. This led to the important Theory of
Quaternions. In so doing, Hamilton respected and conserved many of the
laws of algebra, but also made extensions and significant changes
(Pickering 1995). He overcame what Bachelard (1951) called an
epistemological obstacle, a received, conventional part of the conceptual
apparatus of mathematics that obstructed further progress; a contingency
that appeared a necessity.  

Such dramatic changes in which past strictures are overturned to
develop a new and fruitful theories may not happen every day in the
history of mathematics. But they do happen regularly in children’s
development in school mathematics. It is commonplace for teachers to
extend mathematical topics requiring the negation of existing rules and
the change of underlying meanings, through the adoption of new rules.
For example, for a young child mastering elementary calculation, the task
3-4 is impossible. But later it has a determinate answer: 3-4 = -1.
Similarly 3 divided by 4 (3/4) is at first an impossible task. Later it is not
only a possible task, but ¾ names the answer to it, i.e., becomes a new
kind of semiotic object, a fractional numeral. In early multiplication tasks
children learn implicitly or explicitly that “multiplying always makes
bigger”. Later when the domain of numbers they operate on is expanded
to include fractional and decimal numbers (i.e., Rationals), or even just
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zero, this rule is contradicted. The difficulties caused to learners by these
changes in definitions and conventions are well known.

In these and many comparable cases the rule changes are
necessitated by changes in the underlying meaning of the operations.
Thus subtraction, initially, is usually understood in enactive or
metaphoric terms as resulting from the partitioning of a collection of
concrete objects and the removal of one part. Hence 3-4 is impossible, it
is not just a matter of learner ignorance. Subsequently in learner
development subtraction is commonly understood more structurally as
the inverse of addition applied to an enlarged and more abstract domain
of numbers. Hence since 3-3 = 0, 3-4 = -1. But this is a new mathematical
system, which represents an intellectual advance that took humankind
hundreds of years to make and to accept. It is very likely that the later
more abstract meaning of subtraction cannot be developed without the
earlier concrete meaning, so the apparent contradiction is unavoidable. In
examples such as these, the student has to ‘unlearn’, that is relinquish
something already learned, in order to make further progress. Following
Bachelard, these problems have also been termed epistemological
obstacles (Brousseau 1997, Sierpinska 1987). 

It is through immersion and participation in the practices of first
learning mathematics, and later doing research mathematics, that
mathematicians are enculturated into mathematical forms of life with
their tacit rules, conventions and knowledge. These contingent features,
extended and elaborated through rigorous reasoning and proof, give
mathematicians a sense of the necessity of their subject. They also
enculturate them into the standards and criteria for the acceptance of new
mathematical knowledge. But if only one convention or contingency is
woven into this knowledge, and I claim there are many more than one,
then mathematics as a whole is conventional. 

4. Conclusion

The version of social constructivism that I have been discussing is a
naturalistic philosophy of mathematics that aims to provide an account of
mathematics as it is practised, cognizant of both the social structures
within the mathematical community and the historical development of
the discipline. I have argued that in a particular sense of the term it is
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nominalist, because it regards mathematical objects as signs deployed
within semiotic systems with sign rules and meanings. I have not denied
that abstract objects exist, just located them in the realm of culture,
alongside money, literature, and other human institutions and artifacts. 

I have argued that mathematical knowledge is conventional in the
sense that it is warranted by the rules of mathematics and the
mathematicians’ understandings of logical necessity. However, I have
claimed that these rules, and mathematicians decisions of acceptability
based on them, is itself partly a result of historical contingency. By
subscribing to these limitations and deviations from the traditional
ideology of the purity, objectivity, and perfection of mathematics I aim to
reclaim mathematics from the idealists. Bringing mathematics back down
to earth, to the mundane reality of lived human life, is not to denigrate or
besmirch it. Ironically, the aim is to offer a more accurate and a truer
picture of mathematics as a part of lived human experience. 

University of Exeter
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