
1 The author is indebted to Erik Weber and Peter K. Machamer for their
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2 For my present purposes: “induction” refers to ampliative reasoning processes

in which we reason from particulars to a general conclusion.
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BACON’S IDEA AND NEWTON’S PRACTICE
OF INDUCTION1

Steffen Ducheyne

Did not his Novum Organum  give birth to the Art of Induction? […] Has not Newton in his

Opticks and in his Astronomy followed his precepts, step by step? (Berkeley quoted in

Broadie, 2004: 41)

ABSTRACT

In this essay, I provide a Baconian reading of Newton’s Principia . I argue that Newton

scientific practice (especially in the Principia) was  influenced  by Bacon’s m ethodised  idea

of induction. My focus will be on Newton’s argument of universal gravitation . 

1. Introduction

In this essay, I shall compare Francis Bacon’s idea of the method of
induction2 with Isaac Newton’s practice of induction. My focus will be
on the Principia, since this is the locus where Newton explicitly
proceeded from particulars to a universal conclusion. I shall argue –
against popular agnosticism with respect to Bacon’s influence on Newton
– that Newton’s argument for universal gravitation exhibits some
features that are significantly similar to Bacon’s ideas on the method of
induction. One point should be clarified from the start. It should be clear
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from the outset that Bacon’s method is intended as a method of discovery
(ars inveniendi) (Malherbe, 1996: 75), which pertains to the
Reichenbachian context of discovery. Newton’s argument for universal
gravitation, however, pertains to the method of justification – this
pertains to the Reichenbachian context of justification. The context of
discovery does not necessarily need to correspond to the context of
justification.

Let us look at contemporary assessments of Newton’s
indebtedness to Bacon. In The Cambridge Companion to Bacon, Antonio
Pérez-Ramos summarizes our current understanding of Bacon’s influence
on Newton, as follows:

It is true that Newton does once refer to the “argument from

induction” as a methodological principle, and that he dwells on the

importance of the careful collection of particulars (i.e., Bacon’s

historia naturalis) and consecrates the use of the crucial

experiment in the Opticks. Yet Newton never mentions Bacon by

name, and philosophers and historians of science have been almost

unanimous in rejecting this time-honored reading as wholly

uncongenial, not to say inimical, to the mathematical trad ition to

which Newton obviously belonged. Nonetheless, Newton probably

knew of the Baconian interpretation of his science and, as far as we

know, did not voice any objection to it in his lifetime, though the

full attribution to the Baconian inspiration was chiefly due to his

posthumous editors Collin MacLaurin, Roger Cotes, and Henry

Pemberton. (Pérez-Ramos, 1996: 319)

Bacon’s influence is very modest, according to Pérez-Ramos: Newton
knew Bacon’s method of science, but it were mainly posthumous editors
who were responsible for the Baconian spirit of Newton’s work. I shall
argue that, despite the fact that Newton never explicitly referred to Bacon
and never explicitly cast his natural philosophy in overt Baconian
terminology, Newton’s scientific practice clearly exhibits some Baconian
elements. I shall argue that in order to assess Bacon’s influence on
Newton, we should not restrict ourselves to the explicit utterances on
these matters, but we should also look at Newton’s scientific practice.
What are these features, then? Bacon’s influence lies in the careful
articulation of piecemeal generalization. According to Bacon, we should
never proceed from particulars to universals directly (i.e., simple
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3 I will use Bacon’s Novum Organum  as a guide here (Bacon, 1676). This work

was the second and incomplete part of Bacon’s equally incomplete master project

the Instauratio Magna  (1620).

enumerative induction), but do so by means of partial generalizations
(which he called “medial axioms”). They are partial since they only refer
to a limited set of elements or objects included in the final (universal)
generalization. Subsequently, we try to further unify these partial
generalizations in order to produce a truly “universal” generalization.
Finally, we deduce and test the consequences of the resulting
generalization, and adapt it correspondingly. All this is part of a careful
and methodized procedure of induction. This process of piecemeal
generalizing, which is a more careful pronunciation of scientific
methodology than the Aristotelian ideal of deduction from “true and
necessary” axioms, is the crux of Bacon’s influence on Newton. It is
exactly here that Bacon’s idea of induction meets Newton’s practice of it.

2. Bacon’s Methodized Induction

In this section, I will look at the fundamentals of Francis Bacon’s (1561-
1626) method of induction.3 My aim is not to scrutinize Bacon’s method
nor to criticize it, but simply to present the essentials of his notion of
induction. As is widely known, Bacon rejected the Aristotelian
methodology of syllogistic demonstration (Sargent, 2001: 313) and opted
for a more complex procedure of ascending from particulars to universals
in an “orderly method” (Bacon, 1676: 3, 22). This shift was crucial.
According to Bacon, syllogistic demonstration confused words with the
order of things and corrupted natural philosophy (ibid.: 2, 9). Unravelling
nature is not a simple matter, but a real struggle. One had to provoke and
even “torture” nature in order to do so (for Bacon’s idea of venatio and
vexatio, see Pesic, 1999 and Rossi, 1996). Bacon’s idea of science was
that of an active and operative science (see Pérez-Ramos, 1988; Pérez-
Ramos, 1996). A knower, according to Bacon, is essentially a maker.
True knowledge refers to knowledge which is made or can be made
(reproduced, modelled, fabricated, …) (Pérez-Ramos, 1996: 110). In
order to know a phenomenon, we should be able to (re)produce it (ibid.:
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4 In the famous example of the nature of hotness, Bacons wrote: “We must first

speak of those things, which seem not to the feeling to be hot, and yet are so

potentially afterwards: we shall then descend to mention such things as are

actually, or at the feeling hot; and to  examine their strengths and degrees of

heat.” ( ibid.: 25). 

115). Put more precisely: “The capacity of (re)producing Nature’s
‘effects’ was perceived as the epistemological guarantee of man’s
knowledge of natural processes in the external world.” (Pérez-Ramos,
1988: 59). Accordingly, Bacon reacted to the Aristotelian dichotomy
between products of nature (naturalia) and human arts (artificialia), by
showing that there is no ontological difference between the spontaneous
workings of nature and the workings which are directed or manipulated
by man’s purposive action (ibid.: 109; Pérez-Ramos, 1996: 110-116).
Nature always maintains the same modus operandi. Let us now turn to
Bacon’s method of induction.

Bacon’s inductive method starts with sensible experience
“immediately drawn from things, as they appear” (Malherbe, 1996: 85).
These “data” are then generalized to low-level axioms by means of the
tables of induction. There are three kinds of tables:

(1) The table of essence and presence, which enumerates all
situations in which the nature under consideration is present (cf.
“all instances that agree in their Nature, though by different
matters”; ibid.: 22).
(2) The table of deviation or absence of degrees, which lists all
situations which are as similar as possible to the first table, but
where the nature under consideration is absent.4 
(3) The table of counter-instances, which suggests experiments in
order to search possible counter-examples.

Once we have applied these tables, we potentially acquire some low-
level axioms or “living axioms”. From these axioms more general ones,
i.e. the fundamental laws of nature, can be derived. As Bacon pointed
out:

W e must not permit the Understanding to leap or fly from

particulars to remote and general Axioms, such as the principles of
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Arts and Things, or by their constant verity to prove or discuss

medial Axioms. But then Men may hope well of Sciences, when by

a true Scale, and continual not intermitted degrees, we ascend from

particulars to lesser Axioms, then to the medial, for some are

higher than others; and lastly to universals: for the lowest Axioms

differ not so much from naked Experience, but the suppressive and

more general which occur, are rational and abstracted, and have no

solidity. The medial therefore are those true solid and lively

Axioms, wherein men[N]s fortunes and estates are placed, and

above those also are the more general, if not abstracted, but truly

limited by these medial of middle Axioms. (ibid.: 14)

In this way we obtain “knowledge of the forms”. Bacon believed that
“the most general axioms should form the end rather than the beginning
of scientific inference” (Peltonen, 1996: 16). His method proceeds along
a strict hierarchy of increasing generality. From the fundamental laws it
is possible to derive further deductions and new experiments. In this
process, the method of analysis by exclusion enters the scene (ibid.). This
is the only way to guarantee that the discovered causes are the true
“forms” in nature: we show that no other cause can explain the nature
under investigation – here too we use tables of presence and absence. 

The “living axioms” mediate between the data and the forms.
Crucial in Bacon’s conception of scientific methodology is the view that
we ought to proceed from particulars to universal generalisations by
mediate axioms:

Particular Event 6 Mediate Axioms 6 Universal Generalisation

As we will now see, Newton’s practice (especially his argument for
universal gravitation as spelled out in Book III of the Principia) agrees
with this characterization.

3. Newton’s Argument for Universal Gravitation

In this part, I will analyse Newton’s practice of induction by focussing on
the argument for universal gravitation. The argument for universal
gravitation, where celestial and terrestrial bodies are unified, is not
straightforward. In this process of unification, Newton used various
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5 The proof for the Moon is different. This concerns Newton’s famous Moon test.

In Proposition 4, Newton shows (1) that terrestrial gravity extends to the Moon

and that it does so by an inverse square law, and (2) that it is the force of gravity

which causes the Moon to circle about the Earth. Newton calculated the distance

the Moon would  fall if deprived from all forward motion in one minute. The

result of that calculation is 15 1/12 Paris feet. If gravity diminishes by an inverse

square law and the Earth’s gravity extends to the M oon, then it follows that a

heavy body on the Earth’s surface should fall freely in one minute through 60

times 60 the above 15 1/12 Paris feet (the Moon is approximately positioned at 60

Earth-radii from the Earth’s centre) (Cohen, 1999: 205). This indeed agrees with

terrestrial experiments (cf. Huygens’s experiments with pendula).

6 For the details, see Ducheyne, 2005b . 

inductive reasoning steps. Let us briefly look at how Newton established
his famous unification (for a more elaborate account of unification in
Newton’s natural philosophy, see Ducheyne, 2005a).

First, Newton demonstrated that the circum-jovial planets, the
circum-saturnian planets, the primary planets and the Moon are (1)
drawn towards their respective centres by a centripetal force, and, that
(2) this centripetal force varies inversely proportional to the square of the
distance from those centres (Newton, 1999: 802-5). This respectively
follows from the fact that (1’) they describe areas proportional to the
times and (2’) that their periodic times are as 3/2 powers of their
distances from their respective centre.5 Newton inferred the causal agents
that are responsible for these observed, mathematical regularities. These
“deductions” are validated6 by propositions Newton proved earlier in
Book I:

Proposition 2:

Every body that moves in some curved line described in a plane

and, by a radius drawn to a point, either unmoving or moving

uniformly forward with a rectilinear motion, describes areas around

that point proportional to the times, is urged by a centripetal force

tending toward that same point. (ibid.: 446)

Corollary 6, Proposition 4:

If the periodic times are as 3/2 powers of the radii, and therefore

the velocities are inversely as the square roots of the radii, the
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7 Rule 2 goes as follows: “Therefore, the causes assigned to the natural effects of

the same kind must be, so far as possible, the same.” (Newton, 1999: 795).

8 The domain refers to those bodies that are drawn towards a centre. Therefore, at

this stage the Sun is not an  element of the domain. I will also take over Newton’s

distinction between the secondary planets and the Moon.

centripetal forces will be inversely as the squares of the radii; and

conversely. (ibid.: 451)

A first level of unification is reached in Proposition 5. We know that the
primary planets are drawn towards the sun by an inverse square force,
that the Moon is drawn to the Earth by a similar force, and that the
secondary planets are drawn to their primary planets by a similar force.
Since these revolutions are phenomena of the same kind, they must –
according to the second rule of philosophising7 – “depend on causes of
the same kind” (ibid.: 806). The elements of its domain obviously are:
the primary planets, the secondary planets and the Moon.8 I will
represent this as follows:

(1) (F ~ 1/r²) for domain D1 (D1 = [p = primary planets, s = secondary
planets, m = Moon])

The force-function operates from p towards the Sun, from s towards
Jupiter and Saturn, and from m to the Earth. In Corollary 1 Newton
applied the third law of motion. He established that the sun is drawn back
by the primary planets, that the Earth is drawn back by the Moon, and
that Jupiter and Saturn are drawn back by their satellites. (1) is
reinterpreted as follows:

(2) (F ~ 1/r²) for domain D2 (D2 = [p = primary planets, s = secondary
planets, m = Moon, S = sun])

The force-function operates from p towards S (and conversely), from s
towards Jupiter and Saturn (and conversely), and from m to the Earth
(and conversely). Corollary 2 to Proposition 5 states that the gravity
towards every planet is inversely as the square of the distance (ibid.:
805). In Corollary 3 he further extended his claim: all planets are heavy
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9 Newton does not mention Galileo’s name here: “Others have long since

observed that the falling bodies of all heavy bodies toward the Earth (at least

making an adjustment for the inequality of the retardation that arises from the

very slight resistance of the air)  takes place in equal times, and  it is possible to

discern that equality of the times, to a very high degree of accuracy, by using

pendulums.” (Newton, 1999: 806-7).

toward one another. And hence, Jupiter and Saturn, when in conjunction,
sensibly perturb each other’s motion by attracting each other, the Sun
perturbs the lunar motions, and the Sun and the Moon perturb the sea
(ibid.: 806). (2) is reinterpreted as follows:

(3) (F ~ 1/r²) for domain D2

The force-function operates from p towards S (and conversely), from s
towards p (and conversely), from m to the Earth (and conversely), and
from every p to every p. We see how Newton step-by-step generalized
the inverse-square relation (the final relation will be derived in step 7).
Next, he reinterpreted Galileo’s law of free fall in the following way
(ibid.: 806-7).9 The falling of heavy bodies takes place in equal times.
Newton used experiments with pendulums to show that different
materials of exactly the same weight (gold, silver, lead, glass, sand, salt,
wood, water, and wheat) swing back and forth with equal oscillations.
Such experiments make it possible to discern the time-intervals made by
each swing with high precision. The motive force of a falling body is its
weight. This force is proportional to the acceleration and the mass of the
body (by Newton’s second law). Since the acceleration for bodies in free
fall is constant, the weight of bodies in free fall is proportional to their
mass. Newton generalizes the outcome of the experiments with
pendulums to all terrestrial bodies. In this way Newton arrived at a
different unification:

(4) (W ~ m) for domain D3 (D3 = [t = terrestrial bodies])

Since “there is no doubt that the nature of gravity toward the planet is the
same as toward the Earth”, this also holds for the other planets (ibid.:
807). As he wrote:
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10 In modern terminology this can be demonstrated as follows. Huygens

published the result that a body travelling in a circle needs a force proportional to

v²/r to keep it in orbit: F = k.v²/r. Since v equals 2.B.r/t: F = k.4.B².r²/t².r.

Multiplied by r/r: F = k.4.B².r³/t².r². Since r³/t² is a constant according to Kepler’s

third law, we can obtain: F = (constant)/r². See Newton, 1999: 451.

Further, since the satellites of Jupiter revolve in times that are the

3/2 powers of their distances from the center of Jupiter, their

accelerative gravities toward Jupiter will be inversely as the

squares of the distances from the center of Jupiter10, and, therefore,

at equal distances from Jupiter, their accelerative gravities would

come out equal. Accord ingly, in equal times in falling from equal

heights [toward Jupiter] they would describe equal spaces, just as

happens with heavy bodies on this Earth of ours. (ibid.) 

Here Newton extended the domain of (4). Consequently a new
unification arises:

(5) (W ~ m) for domain D4 (D4 = [t = terrestrial bodies, bp = bodies in
the neighbourhood of other primary planets])

The force-function operates from t to the Earth and more generally from
bp to p. In Proposition 7, Newton claimed that gravity exists in all bodies
universally and is proportional to the quantity of matter in each (ibid.:
810). This follows from the fact that all parts of any planet A are heavy
toward any other planet B. Since the gravity of each part is to the gravity
of the whole as the matter of that part to the matter of the whole, and,
since to every action there is always an equal reaction, it follows that
planet B will gravitate in turn to all the parts of planet A, and its gravity
towards any part will be to its gravity towards the whole of the planet as
the matter of that part to the matter of that whole (ibid.: 810-11). So we
get:

(6) (W ~ m) for domain D5 (D5 = [b = all bodies universally])

Finally, he generalizes the inverse square law for all bodies universally
(ibid.: 811). He first argued that the force of the whole is the resultant of
the forces of the constituting parts. Next, he showed that the gravitation
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toward each individual part is inversely as the square of the distance,
which follows directly from Proposition 74, Book I (ibid.: 593, 811). By
composition – “componendo” – of forces, the sum of the attractions will
come out in the same ratio. Hence, all parts gravitate toward each other
and this force varies inversely as the square of the distance from their
centres. 

(7) (F ~ 1/r²) for domain D5.

So what Newton did is basically this: he extended the proportionality of
weight and mass valid for bodies in free fall to all bodies, and,
subsequently, he extended the inverse square law for celestial bodies to
all bodies universally. The final result is the law of universal gravitation.
The extension from one domain to another is an essential feature of
Newton’s unification in Book III.

So far for the analytic part of Newton’s argument. Newton
described the analysis as follows. It consists in:

making Experiments and Observations, and in drawing general

Conclusions from them by Induction, and admitting of no

Objections against the Conclusions, but such as are taken from

Experiments, or other certain Truths. For Hypotheses are not to be

regarded in experimental Philosophy. And although the arguing

from Experiments and Observations by Induction be no

Demonstration of general Conclusions; yet it is the best way of

arguing which the Nature of Things admits of, and may be looked

upon as so much the stronger, by how much the Induction is more

general. And if no Exception occur from Phænomena, the

Conclusion may be pronounced generally. But at any time

afterwards any Exception shall occur from Experiments, it may

then begin to be pronounced with such Exceptions as occur. By

this way of Analysis we may proceed from Compounds to

Ingredients, and from Motions to the Forces producing them; and

in general, from Effects to  their Causes, and from particular Causes

to more general ones, till the Argument end in the most general.

(Newton, 1979: 404)

We ought to proceed from effects to particular causes and then to general
causes:
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Effects 6 Particular Causes 6 General Causes

Newton typically proceeded from particulars (e.g., motion of a planet) to
mediate axioms (e.g., Kepler’s “laws”). Then these mediate axioms are
investigated and used to arrive at the universal axiom: the law of
universal gravitation. This law is realized through a careful step-by-step
procedure of partially generalizing experimental results. But the story
does not stop with the analytic phase. Next comes the moment of
synthesis. The method of synthesis consist in:

assuming the Causes discover’d and establich’d as Principles, and

by them explaining the phaenomena proceeding from them, and

proving the Explanations. (ibid.: 405)

The synthesis starts after Proposition 8 and stretches out to the very end
of Book III. Newton showed that the irregular motion of the Moon, the
tides, the motion of comets can be deduced from the causes proposed by
the theory of universal gravitation. The phase of synthesis concerns the
testing of the generality of the general principles. If no problems occur,
the principle can by stated as truly universal – which is the case in the
Principia. Ultimately, the synthesis consists in testing the general
principles obtained in the analysis.

Newton eliminated vortices as possible causes for the celestial
motions. In other words, Newton applied the method of analysis by
exclusion. Near the end of book II, Newton showed that the Cartesian
hypotheses of vortices – the only alternative dynamical celestial theory at
hand – faced some serious problems. In Section 9, Propositions 51-53,
Newton showed that the vortices which carry the planets in their
respective orbits cannot be self-sustaining and that their motion is
inconsistent with Keplerian motion (Cohen, 1999: 187). Newton
demonstrated that, if a solid sphere revolves with a uniform motion in a
uniform and infinite fluid (under the further assumptions that the fluid is
made to revolve by only the impulse of the sphere and that each part of
the fluid perseveres uniformly in its motion), the periodic times of the
parts of the fluid will be as the squares of the distances from the centre of
the sphere (ibid.: 781). The periodic times are not as Kepler’s harmonic
law which tells us that they should be as 3/2 power of the distances
(ibid.: 787). Moreover, the law of areas does not apply to them (ibid.:
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11 In Newton’s famous 1672 optical paper (which contains the experimentum

crucis), he eliminated all other possible causes of the appearance of an oblong

form produced by refraction through a prism by showing that these putative

causes were incompatible with observation. Athanasios Raftopoulos has called

this procedure “the elimination through controlled experiment”. See Raftopoulos,

1999. 

789). According to the area law, a planet will move more slowly in the
aphelion than in the perihelion. While according to “the laws of
mechanics” the vortices ought to move more swiftly at the aphelion,
since the space is narrower at the aphelion. In such vortex-system the
periodic times will be as the squares of the distance and the law of area
will not hold. Since we know that the periodic times are as 3/2 power of
the distances and that the area law holds (very nearly), the implicans is
rejected by modus tollens: a vortex-system does not cause the celestial
motions.11

4. Conclusion

We have seen that Newton’s law of universal gravitation is the result of a
piecemeal generalization. Newton’s argument for universal gravitation is
a careful reasoning process, in which we step-by-step generalise data.
This careful proceeding from particular events to “lesser Axioms” and
then finally to universal axioms corresponds to Bacon’s methodized idea
of induction. This sensitivity of establishing universal axioms via partial
generalizations and the importance attributed to further testing the
inferred principle in the synthetic part of science is clearly Baconian of
inspiration. Both Bacon and Newton sought to circumvent the simplistic
method of enumerative induction.

Although there exists no explicit locus where Newton pays his
respect to Bacon’s method of induction, and Newton does not cast his
arguments in close alignment to Bacon’s tables, Newton’s practice is
clearly vivified by the Baconian spirit of careful, methodized induction.
Newton put to practice what Bacon preached. In this respect, Newton
was surely indebted to Bacon. There is a moral to this story as well: we
should not restrict ourselves to the explicit utterances of a scientist (and,
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by extension, of philosophers), but also look at their actual praxis which
sometimes reveals more than explicit utterances.
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