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ABSTRACT

Causal analysis in the social sciences takes advantage of a  variety of methods and of a

multi-fold source of information and evidence. This pluralistic methodology and  source of

information raises the question of whether we should accordingly have a pluralistic

metaphysics and epistemology. This paper focuses on epistemology and argues that a

pluralistic methodology and evidence don’t entail a pluralistic epistemology. It will be

shown that causal models employ a single rationale of testing, based on the notion of

variation. Further, I shall argue that this monistic epistemology is also involved in

alternative philosophical theories of causation.

1. Introduction 

Different social sciences study society from different angles and
perspectives. Sociology studies the structure and development of human
society, demography studies variations in populations due to mortality,
fertility and migration behaviours, economics studies the management of
goods and services, epidemiology studies the distribution of disease in
human populations and the factors determining that distribution, etc. In
spite of these differences, the social sciences share a common objective:
to understand, predict and intervene on society. In these three moments
of the scientific demarche, knowledge of causes is in many cases a
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necessary ingredient in order to provide an explanation of social
phenomena as well as of individual behaviours.

This causalist perspective, however, is not always explicit. Causal
vocabulary is sometimes replaced with more vague terms such as factor,
determinant, risk, but not cause and effect. Also, it is said that in spite of
the heavy formalism of modern models, the social sciences cannot
establish causal relations but only make associational claims. However,
if the social sciences merely described phenomena, it would be useless to
design policies or prescribe treatments that rely on the results of
research. Adopting an explicit causalist stance is motivated by two
distinct but related objectives: cognitive and action-oriented. We pursue
a cognitive goal in detecting causes and thus in gaining general causal
knowledge of the causal mechanisms that govern the development of
society, and such general causal knowledge is meant to inform and guide
social policy, that is we also pursue an action-oriented goal.

In the social sciences, causal analysis takes advantage of a variety
of methods and of a multi-fold source of information and evidence. In
this paper I raise the question of whether such methodological and
evidential pluralism also entails epistemological pluralism. In a nutshell,
I shall give a negative answer and argue in favour of a monistic rationale
of causality based on the notion of variation.

The paper is organised as follows. I first give an overview of
methodological and evidential pluralism by presenting different causal
models and the variety of types of evidence and of information used in
causal analysis, and then spell out the question of whether this form of
pluralism entails epistemological pluralism. Afterwards, I present the
rationale of variation and support it with methodological arguments; I
also offer a taxonomy of variations and discuss some possible objections.
Finally, I show that this rationale is consistent with or even adopted in
alternative philosophical accounts of causation.

2. Methodological and evidential pluralism 

The first developments of quantitative causal analysis in the social
sciences are due to the pioneering works of A. Quetelet (1869) and E.
Durkheim (1895, 1897) in demography and sociology respectively.
Significant improvements are due to H. Blalock (1964) and O. Duncan
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2 Nowadays, in the SEM -literature there isn’t an unanimous consensus as to

whether structural equations can be given a causal interpretation. However, as

Judea Pearl argues at length (Pearl 2000, ch.5), the original interpretation of

SEM was eminently causal and  it is a trend of contemporary researchers to

require extra ingredients for the causal interpretation.

3 I borrow this example from Pearl (2000 : 27-28).

(1975), and since then causal analysis has shown noteworthy progress in
the formal methods of analysis. In the following, I shall just give some
examples of different methods through which contemporary causal
analysis is carried out.

2.1. Structural equation models

Arguably, structural equation models (SEM) are the most widespread
methodology. Originators of SEM were mainly geneticists, such as S.
Wright (1921, 1934), and economists, such as T. Haavelmo (1943, 1944)
and T.C. Koopmans (1950). SEM consist of a set of equations, which can
be used to determine a causal graph. SEM are designed in order to
combine qualitative causal information with statistical data to provide
quantitative assessment of cause-effect relationships among variables of
interest. Other classes of models, e.g. covariance structure or hierarchical
models, rely on SEM, so it is worth spending some time on their
structure, assumptions and hypothetico-deductive methodology.2

To illustrate, we take a canonical econometric model relating price
and demand through two equations3:

Q = $1P + *1I + ,1

P = $2Q + *2W + ,2

Q is the quantity of household demand for a certain product, P is the unit
price of the same product, I is the household income, W is the wage rate
for producing the product, ,1 and ,2 are the error terms, b and * are the
parameters. The first equation states that demand depends on – or is
causally determined by – the unit price of the product and the household
income, while the second states that the unit price of the product depends
on – or is causally determined by – the demand and the wage rate.
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The basic idea underlying SEM is that in a system of equations we
can test whether variables are interrelated through a set of relationships,
by examining the variances and covariances of variables. Sewall Wright,
as early as 1934, has taught us to write the covariance of any pair of
variables in terms of path coefficients. The path coefficient quantifies the
(direct) causal effect of a putative cause X on the putative effect Y; given
the numerical value of the path coefficient b, the structural equation Y =
bX + , claims that a unit increase in X would result in b units increase in
Y.

SEM rely upon a number of assumptions, some of which have
mere statistical importance (for instance, normality) whereas others have
a fundamental bearing on causality (for instance, the non-correlation of
errors terms, covariate sufficiency or no confounding). Among causal
assumptions the crucial one is the so-called invariance condition or
structural stability. This condition states that parameters have to be stable
across a large number of interventions or environmental changes.
Stability of parameters is usually taken as the condition ensuring the
causal interpretation of structural equations.

In SEM, the process of model building involves a continuous
interaction between background knowledge and a sequence of statistical
procedures for elaborating and testing hypotheses. This is the bulk of the
hypothetico-deductive methodology (H-D). H-D methodology is a
procedure that accounts for data obtained through observations and/or
experimentation and that confirms or disconfirms a given causal structure
by confrontation with empirical evidence. Empirical testing is performed
through two stages:
(i) prior theorizing of out-of-sample information, including in particular
the selection of variables deemed to be of interest, the formulation of a
causal hypothesis, etc.;
(ii) iteratively: 
a. building the statistical model;
b. testing the adequacy between the model and the data to accept the
empirical validity or non-validity of the causal hypothesis.

Causal modelling requires accurate knowledge of the causal
context: previous studies, well confirmed scientific theories or
background knowledge are essential. The causal hypothesis states a
hypothesized causal structure to be put forward for empirical testing.
Thus, causality is a matter of confirmation, or borrowing the statistical
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4  An example of an inductive method, that tries to infer causal structures from

data, is TETRAD, the algorithm developed by Spirtes, Glymour and Scheines

(1993).

5  For a very clear introduction see Long (1983).

vocabulary, a matter of accepting or rejecting a given hypothetical causal
structure. This strategy is hypothetico-deductive because the causal claim
is not inferred from the data, as in inductive methods4, but confirmed or
disconfirmed in the given causal context and relative to the structural
model. Elsewhere (Russo, 2005; Russo et al., 2006) I argued in more
detail that several elements participate in justifying the causal
interpretation of these models, for instance the causal context in which
they are built, the specific set of assumptions having causal compass and
their peculiar H-D methodology.

2.2. Covariance structure models

Covariance structure models (CSM) attempt to explain the relationships
among a set of observed variables in terms of a generally smaller number
of unobserved or latent variables.5 Formally, CSM consist of an analysis
of the covariances of the observed variables in two conceptually distinct
steps. A measurement model links observed variables to unobserved
variables and a structural model links unobserved variables. In turn, the
measurement component of CSM consists of a confirmatory factor model
explaining the covariations in a set of observed variables in terms of a
smaller number of common factors. The idea behind CSM is that,
although some variables of theoretical interest cannot be observed
directly, information about them can be obtained indirectly from their
effects on observed variables. 

Thus, CSM consist in the simultaneous specification of the factor
model and of the structural model. The task is to explain the
interrelationships among the observed variables as indicated by the
covariances among them, in terms of the relationships among the
unobserved variables used in the structural equations. It is worth noting
that what specifies causal relations in CSM is the structural equation
model. On the other hand, the measurement model allows us to estimate
latent variables from observed variables.
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6 Very good introductions to multilevel modelling are those of Goldstein (2003),

Snijders and B osker (2004), and Courgeau (2003) in which epistemological and

methodological problems are also discussed in detail.

7 The motivation for developing hierarchical models lies in the so-called

ecological fallacy, firstly recognised by Robinson (1950). The ecological fallacy

consists of inferring individual behaviours from aggregate measures. Robinson

pointed out, for instance, that correlations between two characteristics measured

on a binary basis among individuals (e.g. being black and illiterate in the US), or

by proportions in regions (e.g. proportions of black and illiterate people in the

population) were generally not identical and could even carry opposite signs.

Conversely, the atomistic fallacy arises when, analysing individual behaviours,

the context in which such behaviours occur is neglected.

2.3. Multilevel models

Recently, multilevel or hierarchical models6 are used in a variety of
disciplines, ranging from education to demography. Multilevel analysis is
a methodology for the analysis of data with complex patterns of
variability, the underlying assumption being that data shows a hierarchy
that cannot be neglected in the analysis.

The object of a discipline does not straight specify the level of
aggregation at which analyses have to be carried out. For instance,
economics is interested in the production, distribution and consumption
of wealth, however, there is no a priori specification of whether analyses
have to concern individuals, markets, firms, or nations. Thus, multilevel
analysis recognises the existence of a multiplicity of levels and tries –
within the framework of a single model – to specify the relations holding
among individuals and/or among different levels of aggregation. In other
words, this approach recognises that the grouping of individuals
introduces an influence of the group on its members, and, conversely,
that members have an influence on the group’s behaviour. Failure to
recognise this twofold source of influence and variability may lead to
two types of fallacy: the atomistic fallacy and the ecological fallacy.7 
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2.4. Contingency tables

Causal analysis is also performed by means of contingency tables or
cross tabs. When variables involved are non-metric, categorical data
analysis (CDA) is more often employed instead. CDA has a very long
history. It began in the early 1900s, when K. Pearson and U. Yule were
debating on measures of associations, and two decades later CDA took
advantage of significant contributions by R. Fisher. The first lucid
exposition of the use of contingency tables in sociology is due to Boudon
and Lazarfeld (1966) and in recent years, clear presentations and further
improvements of CDA are available in the works of Hellevik (1984) or
Agresti (1996).

A categorical variable is one for which the measurement scale
consists of a set of categories. Categorical scales are very often used in
the social sciences to measure attitudes and opinions on several issues.
Categorical data consist of frequency counts of observations occurring in
the response categories. Consider the simplest case, where only two
variables X and Y are involved. X has i levels, and Y has j levels,
according to the number of categories that X and Y involve. The ij
possible combinations of outcomes are then displayed in a rectangular
table having i rows and j columns. The cells of the table in fact represent
the ij possible outcomes and contain frequency counts of outcomes.
Tables thus construed are called contingency tables or crosstabulations.
Such ordinary percentage tables can be analysed by adopting an explicit
causal framework.

Such a causal framework is offered, for instance, by Hellevik
(1984), where an explicit causal terminology is adopted. In the bivariate
case, the independent variable Y represents the cause and the dependent
variable X represents the effect. Different levels of X are then compared
with regard to the proportion having a specific value on Y. The difference
in proportion will then measure the degree of association of the two
variables and, in this framework, it will be interpreted as the causal effect
of Y on X. In contingency tables differences in proportions play the
analogue of regression coefficients in SEM, giving highly similar results.
Thus, to some extent, the causal framework for contingency tables rests
on the same features as SEM, namely on background knowledge, choice
of variables, issues of confounding and control, etc.
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2.5. Data and evidence

By means of these different methodologies, social scientists try to make
sense of observations and to infer causal relations between variables of
interest with reasonable confidence. Observations, however, first have to
be collected. Data comes from a variety of different sources: surveys,
census, experiments, interviews, etc. Analogously, evidence of causal
relations can come from different sources: previous studies, background
knowledge, knowledge of mechanisms or of probabilistic relations, etc. 

Previous studies often make it plausible to investigate a given
causal relation in a different population or at a different time.
Background knowledge gives a (causal) context to causal models, for
instance by providing the socio-political context of a population or socio-
demographic differences across different populations, etc. A different
type of background knowledge is constituted by the iterated application
of some methods for the analysis of a given relationship.

Evidence for causal relations can be of two different sorts. We
infer causal relationships from probabilistic evidence: causes have to be
statistically relevant for their effects, but we also require repetition of
similar studies and coherence in their results, namely covariations among
variables of interest have to show some stability. Yet, probabilistic
evidence is not sufficient as correlations may be spurious, as is well
known. To infer causal relationships we also have to exhibit a plausible
mechanism.

It seems then clear that scientific practice in the social sciences
takes advantage of a pluralistic methodology, evidence and source of
information. Consequently, the following question arises: does this
methodological and evidential pluralism entail ontological and
epistemological pluralism? In other words, does the fact that in practice
social scientists use different models, different sources of evidence and
of information entail that there are different concepts or different
rationales of causality? In the remainder of the paper I shall focus on
epistemological pluralism and argue that a single rationale of causality,
based on the notion of variation, is used in the social sciences.
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3. Epistemological monism: the rationale of  variation

3.1. The rationale of variation

Epistemology studies the origin, nature and limits of human knowledge.
Epistemology of causality then wonders how we know about causal
relations, what epistemic access we have to causal relations, under what
conditions we can interpret correlations causally, whether specific
conditions such as invariance under intervention, structural stability or
the Markov condition in Bayes nets guarantee causality. More
specifically, I address the question: what rationale of causality governs
causal models in the social sciences? Is there a unique rationale or
different ones depending on the model at hand? 

A rationale is the principle or notion underlying some opinion,
action, phenomenon, reasoning, model, or the like. A rationale of
causality in causal modelling is then the principle or the notion that
guides causal reasoning (in causal modelling). It is worth emphasising
that a rationale is not a definition of what causality is. A definition is a
description of a thing by its properties; thus, a definition of causality
states what causality in fact is. Whilst providing a definition of causality
is a job for metaphysics, the development of a rationale is a matter of
epistemology. In this paper, I am concerned with the latter problem but
not with the former.

The received view, an heritage of Hume, sees this rationale in the
notion of regularity and this standpoint still pervades contemporary
philosophy of science. As is well known, Hume believed that causality
lies in the constant conjunction of causes and effects. In the Treatise
Hume says that, in spite of the impossibility of providing rational
foundations for the existence of objects, space, or causal relations, to
believe in their existence is a “built in” habit of human nature. In
particular, belief in causal relations is granted by experience. For Hume,
simple impressions always precede simple ideas in our mind, and by
introspective experience we also know that simple impressions are
always associated with simple ideas. Simple ideas are then combined in
order to form complex ideas. This is possible thanks to imagination,
which is a normative principle that allows us to order complex ideas
according to (i) resemblance, (ii) contiguity in space and time, and (iii)
causality. Of the three, causality is the only principle that takes us
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8 This paper is mainly concerned with the scientific literature on causal

modelling. In Russo (2005) I also show that a number of authors in the

philosophical literature employ or presuppose the  notion of variation in their

accounts. For instance, in Woodward’s account (Woodward, 2003) causal

generalisations are “change-relating” or “variation-relating” and variation is a

necessary condition for interventions. In Hausman’s account (Hausman, 1998),

modal invariance presupposes that intervening on the putative cause will produce

a variation on the putative effect, this variation being possible to compute, or at

least possible to estimate.

beyond the evidence of our memory and senses. It establishes a link or
connection between past and present experiences with events that we
predict or explain, so that all reasoning concerning matters of fact seems
to be founded on the relation of cause and effect.

The causal connection is thus part of a principle of association that
operates in our mind. Regular successions of impressions are followed by
regular successions of simple ideas, and then imagination orders and
conceptualizes successions of simple ideas into complex ideas, thus
giving birth to causal relations. The famed problem is that regular
successions so established by experience clearly lack the necessity we
would require for causal successions (otherwise successions would be
merely casual). Hume’s solution is that if causal relations cannot be
established a priori, then they must be grounded in our experience, in
particular, in our psychological habit of witnessing effects that regularly
follow causes in time and space.

My proposal is, instead, to depict the rationale of causality as the
measure of variation or change. The study of change is the study of
factors which produce change. Thus, measuring variations conveys the
following idea: to test causal models means to measure suitable changes
or variations. Causal models apply a H-D methodology: causal
hypotheses are first formulated, and then put forward for empirical
testing. In turn, empirical tests are designed to assess the presence of a
variation, and to assess whether this variation satisfies certain conditions.
Therefore, the point I want to make is twofold: (i) causal modelling is not
governed by a rationale of regularity but by a rationale of variation, and
(ii) there is only one rationale. In other words, methodological and
evidential pluralism do not imply epistemological pluralism.8 The
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monistic epistemology I offer turns around a rationale of causality which
is based on the notion of variation.

3.2. Methodological arguments

Let us consider structural equation models (SEM) first. Recall that the
basic idea of SEM is that in a system of equations we can test whether
variables are interrelated through a set of linear relationships, by
examining the variances and covariances of variables, and that, given the
numerical value of the path coefficient b, the structural equation claims
that a unit increase in X would result in b units increase of Y. This means
that b quantifies the variation on Y accompanied by the variation on X.
The equality sign in structural equations does not state an algebraic
equivalence; jointly with the associated graph, the structural equation is
meant to describe the causal relationship implied by the data generating
process. The path coefficient b, in turn, is meant to quantify the (direct)
causal effect of X on Y. b quantifies the variation on Y produced by the
variation of X, hence the structural equation does not merely describe a
regular concomitant occurrence of Y and X, but how the dependent
variable varies depending on the variation of the independent one. 

It is commonly agreed that, in structural equations, variations in
the independent variables, i.e. the Xs, explain the variation in the
dependent variable, i.e. Y. Witness, for instance, Haavelmo:

In other words, we hope that, for each variable, y, to be

“explained”, there is a relatively small number of explaining

factors the variations of which are  practically decisive in

determining the variations of y. (Haavelmo, 1944:23) (My

emphasis)

So, one might suggest that the explanatory power of a causal model is
given by the inverse of the unexplained variance in the dependent
variable. Namely, because the dependent variable is determined to a
certain extent by variations in the independent variables, the more we can
account for those variations, the higher the explanatory power of the
model. What is not determined by variations in independent variables,
depends on the errors. In fact, the squared path coefficient r2 measures
the portion of the variance in the dependent variable the independent
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variable is responsible for, or, differently put, the squared path
coefficient represents the proportion of common variation in both the
dependent and in the independent variable. Again, reasoning about the
squared path coefficient involves the notion of variation rather than
regularity.

CSM are governed by a rationale of variation too. By way of
reminder, CSM have two models: a measurement model and a structural
model: the covariance matrix in the measurement model is explained by
the (causal) relations as indicated in the structural model. On the one
hand, to analyse covariances means exactly to measure (joint) variations.
The covariance matrix is the matrix of the covariances between elements
of a vector and represents the natural generalization to higher dimensions
of the concept variance of a scalar-valued random variable. The variance
measures how much a single variable varies around the mean, and the
covariance measures how much two variables vary together. On the other
hand, the structural component of CSM is not meant to explain
regularities, but joint variations and, as we just saw, is regimented by the
variation rationale.

Analogously, as they are based on structural equations, multilevel
models too rely on the rationale of variation. Furthermore, variations are
measured not only at one level of aggregation, but also across different
levels. For instance, a multilevel model can assess how educational
achievement varies among students in the same class and across classes
in a school.

Contingency tables also rely on the rationale of variation. The
question is, in fact, the extent to which each of the independent variables
contributes to the variation between the categories in the dependent
variable. In the scheme of reasoning behind contingency tables it is not
hard to recognize the statistical-relevance model (S-R) of explanation
advanced by W. Salmon (1971, 1984). And in fact, not surprisingly, the
rationale of variation is clearly involved in the S-R model. 

According to Salmon, to explain a fact, i.e. to identify its causes,
one has to identify the correct cell in the reference class the fact to be
explained belongs to. Consider Salmon’s example (1984:37). To
understand why a particular individual – say, Albert – committed a
delinquency – say, stealing a car, we first consider the broadest reference
class Albert belongs to (American teenager); then, this class is partioned
into subclasses based on the number of (all and only) relevant factors.
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9 These taxa are detailed and fully exemplified in (Russo, 2005).

Sociological theories suggest taking gender, religious background,
marital status of parents, type of residential community, socioeconomic
status and education, etc. into account. We will thus obtain a large
number of cells, each of which will be assigned a probability of the
degree of delinquent behaviour. This fact, i.e. why Albert committed a
delinquency, will be explained once the narrowest class Albert belongs
to is identified, e.g. male and parents divorced and living in a suburban
area and low education …

As the name suggests, statistical relevance relations are used in the
S-R model in order to isolate relevant causal factors. Let me explain how
it works – the rationale of variation will then become apparent. Let A
denote American teenagers, and Bi various degrees of juvenile
delinquency. What we are interested in is not just P(Bi|A), that is, the
probability of committing a delinquency in the population of American
teenagers, but in a more specific probability, say P(Bi | A & Cj & Dk &
En), where Cj, Dk and En are all relevant factors, for instance gender,
religious background, marital status of parents, etc. The crucial point is
that if conditioning on a further factor, say Fm, does not change the
previous conditional probability, then Fm is not a relevant factor and
hence should not be considered in the explanation. So all factors entering
the S-R model are statistically relevant, i.e. responsible for variations, in
the probability of the fact to be explained.

3.3. Varieties of variations

So far I argued that a monistic epistemology, based on the notion of
variation, regiments different types of causal models. However, the
rationale of variation as just described is still very general. In practice,
social scientists may look for different types of variations depending on
the case at hand. A taxonomy of variations can be sketched according to
the following criteria:9

1. variation across time;
2. variation across individuals;
3. variation across characteristics;
4. counterfactual and control group variations;
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5. observational vs. interventional variations.
We might be interested in whether the same characteristic, say

unemployment rate, varies across time (taxon 1) – e.g. in two successive
surveys, or across individuals (taxon 2) – e.g. individuals in the survey
may show radically different employment histories, or across
characteristics (taxon 3) – e.g. unemployment rate may be different
according to different levels of education. In observational studies we
can model counterfactual variations (taxon 4), for instance the individual
probability of finding a job given certain characteristics, or, in
experimental studies, we can check whether variations hold between the
test and control group. Finally (taxon 5), variations can be merely
observed – when we deal with observational data, or can be the result of
interventions – if we can manipulate and operate directly on data.

3.4. Objections, or further evidence

The rationale of variation is not exempt from possible objections. The
first doubt might be that variation means something stronger, namely
dependence. If so, Pearl has argued instead that independence is more
basic: 

[…] conditional independence is not a ‘restrictive assumption’

made for mathematical convenience; nor it is an occasional grace

of nature for which we must passively wait. Rather, it is a mental

construct that we actively create, a psychological necessity that our

culture labours to satisfy. (Pearl, 1988:385)

In other words, independence is an essential feature for causality.
Nonetheless, a few pages later, Pearl seems to hold quite a different
view, when he draws some conclusions about causal poly trees. He
addresses the old question: causation or covariation? According to him,
the threshold is in the notion of control: causal directionality between X
and Y can only be tested through the introduction of a third variable Z.
This is because by introducing Z we test whether: 

by activating Z we can create variations in Y and none in X, or

alternatively, if variations in Z are accompanied by variations in X

while Y remains unaltered . […] the construct of causality is merely

a tentative, expedient device for encoding complex structures of
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10 It is worth noting that Pearl changed his mind about causality between 1988

and 2000: “Ten years ago, when I began writing Probabilistic Reasoning in

Intelligent Systems (1988), I was working within the empiricist tradition. In this

tradition, probabilistic relations constitute the foundations of human knowledge,

whereas causality simply provides useful ways of abbreviating and organizing

intricate patterns of probabilistic relationships. Today, my view is quite different.

I now take causal relationships to be the fundamental building blocks both of

physical reality and of human understanding of that reality, and I regard

probabilistic relationships as but the surface phenomena of the causal machinery

that underlies and propels our understanding of the world.” (Pearl, 2000:xiii-xiv).

dependencies in the closed world of a predefined set of variables. It

serves to highlight useful independencies at a given level of

abstraction, but causal relationships undergo change upon the

introduction of new variables. (Pearl, 1988:397) (my emphasis) 

In the ultimate analysis, Pearl did use the rationale of variation, and this
rationale seemed to precede the notion of independence, contrary to what
he himself stated, i.e. that independence is the basic notion for causal
learning.10

Another obvious objection to the rationale of variation is that this
rationale is nothing but a reformulation of Humean regularist accounts.
This is only partly true. Let me deal with the non-true part first. The
crucial step in Hume’s argument is significantly different from the
rationale I propose. My claim is that we look for variations, not for
regularities. Once variations are detected, a condition of invariance or
structural stability (among others) is imposed on them. What does
structural stability give us? Not logical or nomic necessity, nor mere
constant conjunction. Structural stability is a condition imposed on joint
variations, in order to ensure that the model correctly specifies the data
generating process and to ensure that the model does not confuse
accidental variations with causal ones. Although the invariance condition
is the most important one, other conditions – e.g. no confounding – grant
the causal interpretation of statistical models. The true side of the
objection is that in observational studies attention is mainly directed to
variations that happen to be regular, at least regular enough not to be
accidental.
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11 For a thorough discussion of variation as a precondition, see Russo (2005).

Let me underline why so much importance is bestowed on the
notion of variation. Variation is conceptually a precondition. If causality
is not set in the notion of variation, then it will be lodged in the
invariance condition, which is conceptually misleading. The same holds
for regularity. In both cases there is a further question to ask: invariance
of what?, regularity of what? The answer is, in both cases, of a variation.
In particular, invariance – the queen of the causal conditions – only
makes sense within a causal model, whereas variation is exactly what
motivates testing invariance. In other words, without variation,
invariance is devoid of meaning. This is why variation conceptually
precedes invariance.11 

To provide a rationale of causality means, to put it otherwise, to
give the bottom-line concept – namely, variation – and the constraints to
put on this variation – namely, invariance and regularity. Neither
invariance nor regularity are apt to accomplish that task. But variation is.
Hume inferred causation from regularity, whereas my claim is that we
infer causation from variation because variation conceptually and
empirically comes before regularity. Of course, both notions – regularity
and variation – don’t guarantee a straight causal interpretation, but the
rationale of variation puts us on the right track because it makes causality
an empirical issue rather than a psychological fact or a mere reduction to
statistical conditions to be satisfied.

The Humean paradigm of regularity still dominates contemporary
philosophy of science. Regularity views of causation are clearly an
heritage of the Humean account. Defenders of regularist accounts claim,
roughly, that to assert a causal relation between two events x and y means
to assert the existence of a regular succession such that every time an
event of type X occurs, then an event of type Y will invariably follow.
Humeans like J.S. Mill or J. Mackie have advanced more sophisticated
versions of the regularist view (e.g. the I.N.U.S. condition) and tried to
characterise the kind of regularity that can underpin causal relations by
tying causation to laws of nature. Even Lewis’ counterfactual approach
uses regularities as a means to capture the conditions under which
counterfactual assertions are true. Also, the probability raising
requirement often advocated in probabilistic accounts, has been backed
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by a ceteris paribus condition – i.e. a condition of homogeneity – that
makes things regular enough to let the cause raise the probability of the
effect.

The variation rationale profoundly breaks down this received view.
The variation rationale argues, in the first place, that this emphasis on
regularity is not well-founded, for regularities themselves require a prior
notion, which is variation. Secondly, the difficulty or impossibility of
establishing causal laws in the social sciences is usually taken as a
structural weakness or even as an intrinsic impossibility for the social
sciences to reach the kingdom of “hard sciences”. The variation rationale
is the first step for a radical change in the dominant paradigm: if, in the
ultimate analysis, causal modelling aims at measuring variations rather
than establishing regularities, this might be due to the fact that the
regularist rationale is not, after all, well founded as empiricists claim
since Hume. This calls for a change of paradigm in causal modelling,
rather than giving up our endeavour to establish causal claims or
questioning the rigorous scientific character of the social sciences.

4. The rationale of variation in philosophical accounts of causation 

A number of accounts of causation have been proposed in the last
decades. The probabilistic, mechanist and counterfactual approach take
causal relations to be objective, in the sense that causality is defined
independently of the agent, the first relying on statistical relevance, the
second on the notion of physical process and interaction, and the third on
counterfactual logic. Agency theories, instead, define causality in terms
of an agent’s ability to operate on causal relations; manipulability
theories try to get rid of anthropomorphism and to regain objectivity by
developing a notion of intervention that fits causal modelling. A different
attempt to give causality an objective character is epistemic causality,
where objectivity is understood as “non arbitrary” rather than “mind-
independent”. The goal of this section is to disclose how the rationale of
variation is consistent with or (more or less explicitly) adopted in those
accounts.



FEDERICA RUSSO114

12 See for instance (Good , 1961), (Good  1962), (Suppes, 1970), (Cartwright,

1979), (Cartwright, 1989), (Eells, 1991).

13 (Salmon, 1984), (Salmon, 1994), and (Dowe 1992).

4.1. Variation in probabilistic theories

Probabilistic theories (PT) of causality have been developed in slightly
different manners by different philosophers in the last decades.12 In spite
of the significant differences in these accounts, a core of agreement can
be found in the pioneering works of Good and Suppes that, roughly
speaking, turn around the probability raising requirement: ceteris
paribus, causes make their effects more probable. Prima facie, C is a
cause of E if, and only if, (i) C occurs before E and (ii) C is positively,
statistically relevant to E, that is P(E |C) > P(E). 

Thus PT focus on the difference between the conditional
probability of the effect given the cause P(E|C) and the marginal
probability of the effect P(E). To compare the conditional and marginal
probability means to analyse a statistical relevance relation. The
underlying idea is that if C is a cause of E, then C is also statistically
relevant for E. To evaluate a statistical relevance relation exactly means
to measure a variation, in particular, a variation in the conditional
probability of E given C with respect to the marginal probability of E.
That is to say, the change hereby produced by C in the effect E will be
detected because the conditional and the marginal probability differ.

4.2. Variation in mechanist accounts

The mechanist approach13 takes physical processes and interactions
between them to be the fundamental concepts for causation.  Simply put,
the Salmon-Dowe theory is based on three definitions: (i) causal
interaction, (ii) causal process, and (iii) causal transmission. 

First, a causal interaction is an intersection of world-lines which
involve exchange of a conserved quantity. In this definition, the meaning
of exchange is worth stressing: at least one outgoing process manifests a
change in the value of the conserved quantity and the exchange is
governed by the conservation law. Second, a causal process is a world-
line of an object that transmits a nonzero amount of an invariant quantity
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14 This position is also know as modal realism.

at each moment of its history (each space-time point of its trajectory).
Last, the principle of mark transmission is formulated as follows: a
process transmits an invariant (or conserved) quantity from A to B (A¹B)
if it possesses this quantity at A and at B and at every stage of the process
between A and B without any interactions in the half-open interval (A,B]
that involves an exchange of the particular invariant (or conserved)
quantity.

The notion of variation plays a fundamental role in the definition
of causal interaction. In fact, an exchange of invariant or conserved
quantities between processes actually produces a modification or
variation in them and this is what makes the interaction causal. Of
course, the way in which the rationale of variation is here employed
differs from the quantitative one depicted in causal modelling, but the
qualitative claim still holds: the bottom-line concept of causality is in the
concept of variation, not in regularity, stability or invariance.

4.3. Variation in counterfactuals

D. Lewis (1973) is the main proponent of the counterfactual theory of
causation. Causal relations are analysed in terms of subjunctive
conditionals, also called counterfactuals: “A caused B” is interpreted as
“B would not have occurred if it were not for A”. Counterfactuals are
subjunctive conditionals where the antecedent is known or supposed to
be false and are regimented by a possible-world semantics.

Possible-world semantics rest on the assumption of the existence
of a plurality of worlds, among which there is also our actual world.14

Worlds are compared with each other on the basis of their similarity or
closeness. The relation of comparative over-all similarity among possible
worlds is taken as primitive and we say that one world is closer to
actuality than another if the first resembles our actual world more than
the second does. The truth of a counterfactual is then ascertained by an
“inspection” of  what happens in other possible worlds. Given any two
propositions A and B, the counterfactual A~®B reads: “if A were true,
then B would also be true”. The counterfactual operator ~® is defined
by the following rule of truth:
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15 In Lewis’ theory “A-world” means “the world in which A is true”.

The counterfactual A~®B is true (at a world w) if, and only if:
(i) there are no possible A-worlds15, or
(ii) some A-world where B holds is closer to w than is any A-world where
B does not hold.

The second case is the interesting one, for in the former the
counterfactual is just vacuously true. Causality comes in because by
asking whether a counterfactual is true, we wonder whether the
occurrence of A is the cause of the occurrence of B. So, the
counterfactual, if true, states that if the cause had not occurred, the effect
would not have occurred either.

How the rationale of variation is involved in the counterfactual
approach will become apparent once the motivation for its development
is spelled out. Lewis wants to go beyond standard regularity theories as
they failed to notice the second definition of cause Hume gave in the
Enquiry:

We may define a cause an object followed by another, and where

all the objects, similar to the first, are followed by objects similar

to the second. Or, in other words, where, if the first object had not

been, the second had never existed. (Hume, 1748: section VII)

If the cause had not been, the effect had never existed. For Lewis, this is
not just a restatement of the regularist view, but a clear input and
encouragement to take up the counterfactual path. In Lewis’ words:

We think of a cause as something that makes a difference, and the

difference it makes must be a difference from what would have

happened without it. Had it been absent, its effects – some of them,

at least, and usually all – would have been absent as well. (Lewis,

1986:160-161)

Causes are supposed to make a difference, i.e. causes are responsible for
variations. The bottom-line concept is, again, not in regularity,
uniformity, or invariance, but is in difference, change, and variation.
Agreed, it would be misleading to maintain the counterfactual approach
relies on the rationale of variation; yet, the variation idea is definitively



THE RATIONALE OF VARIATION 117

16  (Price, 1991), (Price, 1992), (Menzies and Price, 1992).

consistent with it, as Lewis’ words clearly show. The rationale of
variation here involved is not quantitative, as is the case in causal
modelling. Instead, a qualitative notion of variation is here at stake.
Surely Lewis’ account is of little help in testing causality over large data
sets, but counterfactuals do grasp, at least, our intuitions about how the
causal relation works: ceteris paribus, if the cause had not occurred, the
effect had never existed either. In other words, we expect the cause to be
responsible for the change leading to the effect.

4.4. Variation in agency-manipulability theories

Agency theories16 analyse causal relations in terms of the ability of
agents to achieve goals by manipulating causes. In a nutshell, C is said a
cause of E if bringing about C would be an effective way to bring about
E. To explain what counts as an effective strategy, Menzies and Price
invoke the means-end relation, which is characterised in terms of agent
probabilities. Agent probabilities are conditional probabilities assessed
from an agent perspective as follows: the agent probability of E
conditional on C is the probability that should enter in the calculations of
a rational agent, whose abilities consist in the capacity to realise or
prevent C, and whose goals entirely concern E. So a strategy to bring
about E is effective if a rational decision theory prescribes it as a way of
bringing about E. That is to say, agents probabilities are defined in terms
of their role in rational decision-making and this is why they embody a
basis for a formal analysis of the means-end relation.

This account is consistent with the central idea of the probabilistic
theory of causality. In fact, C constitutes a means for achieving E only in
the case that the agent probability PC(E) is greater than Pnot-C(E), where
PC denotes the agent probability that E would hold, were one to realise C.
Because the agency theory turns out to be consistent with probabilistic
theories of causality, a fortiori it is consistent with the variation
rationale.
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17 (Hausman, 1998), (Woodward, 2003), (Hausman and Woodward, 1999),

(Hausman and W oodward, 2004).

D. Hausman and J. Woodward17 propose a manipulationist account
of causation. Their purpose is to overcome the objection of
anthropomorphism raised against the agency theory, by developing a
notion of intervention which is not agency-dependent. In their
manipulationist or interventionist account, causal relations have
essentially two features: (i) they are potentially exploitable for purposes
of manipulation and control, and (ii) they are invariant under
intervention. Everything turns around the specification of the notions of
intervention and invariance. 

Briefly put, an intervention on X with respect to Y changes the
value of X in such a way that, if any change occurs in Y, it occurs only as
a result of the change in the value of X and not from other sources. On
the other hand, the notion of invariance is closely related to the notion of
intervention and takes advantage of the notion of generalization. A
generalization G is invariant if it would continue to hold under some
intervention that changes the value of X in such a way that the value of Y
would change. “Continue to hold” means that G correctly describes how
the value of Y would change under this intervention. For Hausman and
Woodward, equations in SEM are correct descriptions of the causal
relationship between X and Y if, and only if, were one to intervene in the
right way to change the value of X, then Y should change in the way
indicated by the equation.

Invariance, or structural stability, is then a necessary ingredient for
avoiding equations describing contingent or spurious relations.
Nonetheless, it is worth asking – and here is where the rationale of
variation emerges, what exactly remains invariant. The answer is:
invariance of a detected variation. As we have seen earlier, structural
equations describe how variations in X accompany variations in Y and
structural parameters quantify the causal effect of X on Y. Eventually, in
characterising causality as invariance under intervention, manipulability
theories rely on the variation rationale in an essential manner.
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18 (Williamson, 2005).

4.5. Variation in epistemic causality

According to Williamson’s epistemic theory of causality18, causality is an
objective mental construct. Causality is mental because it is a feature of
an agent’s mental state, as opposed to physical causality which is a
feature of the world “out there”, and it is objective because if two agents
differ as to causal structures, then at least one of them must be wrong.
Causal relations belong to an agent’s representation of the world, more
precisely, epistemic causality deals with causal beliefs. It is convenient
to represent the world in terms of causes and effects because such causal
representations, if correct, enable accurate predictions, diagnosis,
decisions and interventions.

This metaphysical stance about causality is also accompanied by
an account of the epistemology of causality: causal relations are
discovered by an hybrid of the inductive and hypothetico-deductive
method. Because the variation rationale belongs to epistemology, the
question is whether or not the rationale is compatible with Williamson’s
learning strategies for epistemic causality, which involve four stages:
(i) hypothesise;
(ii) predict;
(iii) test;
(iv) update.

The first stage – the inductive one – requires a procedure for
obtaining a causal graph from data and standard artificial intelligence
techniques allow us to induce a minimal causal graph that satisfies the
Causal Markov Condition. In the second stage, predictions are drawn
from the induced graph and those predictions will be tested in the third
stage. By renewed information or by performing experiments, predictions
will be confirmed or disconfirmed. Finally, the fourth step represents a
radical change in the hypothetico-deductive method: in case predictions
fail, we do not start from the very beginning at step one, but we update
the causal graph according to new evidence and information gathered.

The variation rationale permeates Williamson’s learning strategy
in the same sense as it permeates causal modelling. Causal models are
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tested by measuring suitable variations among variables, and this is
exactly what happens in the test stage. Witness Williamson:

If, for instance, the hypothesised model predicts that C  causes E,

and an experiment is performed which shows that intervening  to

change the value of C does not change the distribution of E,

controlling for E’s other direct causes, then this evidence alone

may be enough to warrant removing the arrow from C to E  in the

causal model. (Williamson, 2005:149) (my emphasis) 

Again, the rationale for testing causal relations is based on variation, not
on regularity nor invariance.

5. Conclusion  

The social sciences perform causal analyses by means of a variety of
methods and rely on several sources of information and of evidence. This
methodological and evidential pluralism raises the question of whether
ontological and epistemological pluralism ought to be accordingly
adopted.

This paper focused on the epistemological side and argued in
favour of a monistic epistemology based on a rationale of variation. The
rationale of variation is shown to be the basic notion employed in causal
reasoning in different causal models, e.g. structural equation models,
covariance structure models, multilevel analysis and contingency tables. I
have argued that the variation rationale goes against the regularity view
and constitutes the bottom-line concept of causality because it is a
precondition both for regularity and invariance. Finally, I also showed
how this rationale is consistent with or even adopted in various
philosophical accounts, from probabilistic theories to mechanist
approaches, from agency-manipulability theories to epistemic causality.

We have seen that the inheritance of the received view is a
rationale of regularity. The rationale of variation profoundly breaks
down this conception. The philosophical gain in adopting the rationale of
variation is fourfold. First, causality is not merely lodged in a
psychological habit of observing regular successions of events. Agreed,
we do experience such regular sequences but, I argue, it is not because of
regularity that we interpret them causally. Instead, this is because certain
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variational relations hold. Second, causality is not reduced to statistics
either. Correlation, as is well known, does not prove causation. Further,
to claim that variation is a precondition for regularity and invariance has
the undoubted advantage of not confusing the rationale of causality with
the conditions that allow to interpret variations causally. Third, along the
same line, the adoption of the rationale of variation avoids confusing (i)
what causality is (metaphysics) with the notion employed in testing
(epistemology) and (ii) with the conditions – e.g. invariance – to impose
on the variation to interpret it causally (methodology). Last, the rationale
of variation is a first step in redeeming the social sciences as sciences. In
fact, as individuals and societies are too mutable, the social sciences
cannot establish universal and necessary regularities as physics does. For
this reason their scientific status has been often questioned. This
indictment is ill-founded because the social sciences aim at establishing
causal variations rather than regularities.
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