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ABSTRACT 

This paper critically assesses the claim by Gavin Menzies that Regiomontanus 
knew about the Chinese Remainder Theorem (CRT) through the Shù shū Jiǔ 

zhāng (SSJZ) written in 1247. Menzies uses this among many others arguments 
for his controversial theory that a large fleet of Chinese vessels visited Italy in 
the first half of the 15th century. We first refute that Regiomontanus used the 
method from the SSJZ. CRT problems appear in earlier European arithmetic and 
can be solved by the method of the Sun Zi, as did Fibonacci. Secondly, we pro-
vide evidence that remainder problems were treated within the European abbaco 
tradition independently of the CRT method. Finally, we discuss the role of recre-
ational mathematics for the oral dissemination of sub-scientific knowledge.  
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1 Introduction 

The title of this paper is inspired by the section heading of Gavin Men-
zies’s latest book 1434 (Menzies 2008, p. 147) titled Regiomontanus’s 

Knowledge of Chinese Mathematics. Menzies already stirred considerable 
controversy with his first work titled 1421 (Menzies 2002) in which he 
claims that the Chinese fleet circumnavigated the world during the Ming 
and travelled to parts of the world yet undiscovered by the Europeans, 
such as the Americas. Menzies is a retired naval commander with no 
command of the Chinese language. His methods were criticized and his 
conclusions dismissed by several historians and sinologists but his hypo-
thesis also attracted many followers, gathered around a website. They call 
themselves “friends of the 1421 website” and their aim is to support 
Menzies’s theories with “additional evidence”.  In a critical assessment of 
Menzies’ “evidence” that has escaped “distinguished academics in the 
field”, Bill Richardson concluded that “‘[i]maginography’ and unin-
formed, wildly speculative ‘translations’ of toponyms are not conducive 
to a credible rewriting of history” (Richardson 2004, p. 10). 

His latest book is no less controversial. The new hypothesis in 1434 
becomes apparent from the subtitle “The Year a Magnificent Chinese 
Fleet Sailed to Italy and Sparked the Renaissance”. According to Menzies 
a large fleet of Chinese vessels visited Italy in the first half of the 15th 
century. As a consequence, many great men from the Renaissance such as 
Paolo Toscanelli, Leone Battista Alberti, Nicolas of Cusa, Regiomonta-
nus, Giovanni di Fontana and Mariano Taccola found direct inspiration 
for their knowledge from the Chinese. He claims for example, that many 
of the inventions that Leonardo da Vinci is credited for actually depended 
on knowledge of Chinese contrivances through Taccola and Francesco di 
Giorgio. The evidence is presented sophistically by showing the similari-
ty of Renaissance and Chinese illustrations side by side (see figure 1). 
Alberti’s knowledge of perspective would depend on the Shù shū Jiǔ 

zhāng (數書九章, Mathematical Treatise in Nine Sections, hence SSJZ, 
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Libbrecht 1973) by Qín Jiǔshào (秦九韶) written in 1247.1 And so it 

goes on.  
 

 

From the Nung shu, 1313  (Need-

ham, 1965) 
Late 15

th
 C. copy of Tac-

cola (Ms. Palatino 767, 

f. 32r, BNC Florence) 

Figure 1: A typical example of Menzies’s “evidence” for Chinese 

influences. 

 
It is all too easy to dismiss the claims by Menzies by reasons of a lack 

of historical scrutiny and his limited knowledge of the Chinese language 
and discard all of his observations. However, his claims are challenging, 
the parallels are surprising, and some evidence cries out for an explana-
tion. As it is our belief that scholars should not shy away from the claims 
presented in the book we will take up the challenge. We will focus here 
on one of Menzies’s arguments dealing with mathematics: because of his 
knowledge of the Chinese Remainder Theorem (CRT) Regiomontanus 
knew the relevant Chinese mathematical works. We will demonstrate that 

                                                      
 
 
1 We will use the pinyin transcription for the names of Chinese books and au-
thors. 
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the argument is false and that the criticism applies to many similar claims 
in his book.  

However, there has been a transfer of mathematical knowledge from 

East to West. The CRT method or Da-yan shu (大衍術 Great Extension 

Mathematics) is a Chinese invention. Therefore we will also address the 
question of how then to account for dissemination of knowledge through 
distant cultures without the availability of written evidence. 

2 The da yan rule2 

Let us first recall that the da yan rule describes that for a set of congru-

ences (mod )i ix a m≡  in which the im are pair wise relative primes, the 

solution is given by 

 
1 1

n

i i
i

M
x a b

m=

=∑  

in which M is the product of all the 
im  and the ib  are derived by the 

congruence relation 1(mod )i i
i

M
b m

m
≡ . 

The Chinese version of the rule depends on a specific procedure 
which we will illustrate by a numerical example. See Needham (SCC, III, 
pp. 119-120), Libbrecht 1973, pp. 333-354),  Katz 1992, p. 188, or 
Martzloff 2006, pp. 310-323 for other examples. We will abbreviate con-

gruence sets by the compact notation 1 1 2 2( ), ( ), , ( )n nx a m a m a m≡ … . Our 

example is  x  ≡  2 (3),  3 (5),  4 (7). This would translate in natural lan-
guage as: x is a number which divided by three leaves 2, and divided by 
five leaves 3, and divided by seven leaves 4. 

                                                      
 
 
2 The name is in Western publications better known under its Wade-Giles transli-
teration ta-yen. 
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1) Reduce the moduli (ding mu or fixed denominators) to a multip-
lication or a power of prime numbers unless they are prime or a 
power of a prime already (which is the case in our example). The 
relative prime moduli are called ding shu. This procedure is 
called da yan qiu yi shu (great expansion procedure for finding 
the unity) from which the da yan name is derived. 

2) Find the least common multiple of the moduli, called the yan mu 
(multiple denominators). In our example the product of 3, 5 and 7 
is 105. 

3) Divide the yen mu by all the ding shu. The result is called yan shu 
(multiple numbers or operation numbers), in our example 35, 21 
and 15 respectively.  

4) Subtract from the yen shu the corresponding ding shu as many 
times as is possible. The remainders are called qi shu (surplus). 
Thus 35 – 3(11) = 2, 21 – 5(4) = 1, 15 – 7(2) = 1.  

5) Calculate the chêng lü (multiplying terms) as 1(mod )i i
i

M
b m

m
≡ , 

being 1 12 1(mod3), 2b b= = , 2 21 1(mod5), 1b b= =  and 

3 31 1(mod7), 1b b= = . 

6) Multiply the chêng lü with the corresponding yan mu and the re-
mainders. These are called yong shu (useful numbers). Thus 2.35 
= 70, 3.21 = 63 and 4.15 = 60. 

7) Multiply the yong shu with the remainders. Thus 70.2 = 140, 63.1 
= 63 and 60.1 = 60. 

8) Add these products together and you will get the zong shu (sum) 
thus 140 + 63 + 60 = 263. 

9) Subtract the yan mu from this sum as many times as possible to 
get the solution, x = 263 – 105 – 105 = 53. 

The terminology is taken from Qín Jiǔshào. An English translation of the 
complete text of the procedure is given by Libbrecht 1973, pp. 328-332 
and Dauben 2007, pp. 314-15. 
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3 An epistemic claim 

In this section we provide a fair representation of the epistemic argumen-
tation developed by Menzies. The first premise consists of the fact that 
Regiomontanus had knowledge of the da yan rule. The evidence pre-
sented stems from his correspondence with the astronomer Francesco 
Bianchini in 1463. The Latin correspondence was published by Curtze 
1902. In a letter to Bianchini (not dated but late 1463 or early 1464)  Re-
giomontanus poses eight questions, the last one being “Quero numerum, 
qui si dividatur per 17, manent in residuo 15, eo autem diviso per 13, 
manent 11 residua, At ipso diviso per 10 manent tria residua: quero, quis 
sit numerus ille” (Curtze 1902, p. 219). Within the context of the quatro-

cento such questions should be understood as challenges rather than ge-
nuine enquiries. Regiomontanus probably had the solution before posing 
the question. But Bianchini met the challenge and produced a correct 
answer in his letter of 5 Feb 1464 (Curtze 1902, p. 237).  Bianchini an-
swers the above problem with the solutions 1103 and 3313 and adds that 
there are many more solutions, but that he does not wish to spend the 
labor for finding more (“Sed in hoc non curo laborem expendere, in aliis 
numeris invenire”). This comment leads Curtze to conclude that Bianchi-
ni did not know the general method. In his answering letter (not dated, 
Curtze 1902, p. 254) Regiomontanus reveals that there is an infinite num-
ber of solutions and that the solutions are easily generated, annotated by a 
figure in the margin (“Huic si addiderimus numerum numeratum ab ipsis 
tribus divisoribus, scilicet 17, 13 et 10, habebitur secundus, item eodem 
addito resultat tertius etc.”). Every time one adds the least common mul-
tiple of the three divisors, additional solutions are generated, not much 
labor required at all. But concluding from this, as Curtze does, that Regi-
omontanus knew the general solution for the remainder problem, is one 
step too far. As we shall demonstrate below, the solution can be obtained 
by tables or trial and error and the rule for generating additional solutions 
was known within the abbaco tradition. It even had its own name. It is 
impossible from the correspondence to establish the specific procedure he 
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used for finding the first solution. The second premise, that a general 
procedure for applying the CRT is explained in the Shù shū Jiǔ zhāng, is 
of course justified. From this Menzies concludes that “it follows that 
Regiomontanus must have been aware of this Chinese book of 1247 un-
less he had quite independently thought up the Da-yan rule, which he 
never claimed to have done” (Menzies 2008, p. 149). So, Menzies tacitly 
assumes that Regiomontanus did not reconstruct the CRT by himself. We 
also believe this to be true on basis of what we know of his writings and 
the historical context, discussed below. However, remark that Menzies’s 
argument thus can be used to pose the opposite: “it follows that Regi-
omontanus must have independently thought up the Ta-Yen rule unless he 
was aware of this Chinese book of 1247, which he never claimed to have 
known”. He further adds: “The implications of Regiomontanus knowing 
of this massive book, which was the fruit of the work of thirty Chinese 
schools of mathematics, could be of great importance. (..) It may lead to a 
major revision of Ernst Zinner’s majestic work on Regiomontanus” (ib-
id.).3 In summary, in we keep tacit the premise that “Regiomontanus did 
not discover the CRT independently”,  the argument runs as follows: 

Premisses: 1) Regiomontanus had knowledge of the CRT in 1463. 
   2) The CRT is explained in the SSJZ of 1247. 
Conclusion:  Regiomontanus had knowledge of the SSJZ. 

In the sections below we will show that this argumentation is wrong. First 
we start with a historical reconstruction of the premises and conclusion 
and show that the first premise cannot be justified. Secondly, we will 
provide new historical evidence that before 1434 there was European 
tradition of dealing with remainder problems which was sufficient to 
explain Regiomontanus’s solutions without the CRT. Thirdly we will 

                                                      
 
 
3 Ernst Zinner 1939 is the biographer of Regiomontanus. 
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demonstrate that even if one accepts Menzies’s premises, alternative ex-
planations are still possible.  

4 Other sources for the da yan rule 

4.1 Earlier European sources4 

Already in 1202 Fibonacci discusses seven remainder problems in his 
Liber abbaci. His last problem is actually the one which we used as an 
example (Latin in (Boncompagni 1857, p. 304), English by (Sigler 2002, 
pp. 428-29), also discussed and translated by (Libbrecht 1973, pp. 236-
238)). Fibonacci predates the Shù shū Jiǔ zhāng and while he gives a 
general method for the moduli 3, 5 and 7 and another one for the moduli 
5, 7 and 9, his procedure is different from the one we listed above (Sigler 
2002, pp. 428-9): 

He divides the chosen number by 3, and by 5, and by 7, 

and always you ask what are the remainders from each division. You truly 
for each unit of the remainder upon division by 3 keep 70, and for each 
unit of the remainder upon division by five you keep 21, and for each unit 
of the remainder upon division by seven you keep 15. And whenever the 
total exceeds 105, you throw away 105, and that which remains for you 
after all the 105 are thrown away will be the chosen number.  For exam-
ple, it is put that after division by 3 there remains 2 for which you twice 
seventy, that is 140; from this you take away the 105 leaving 35 for you. 

                                                      
 
 
4 We will limit the discussion of European sources to the period before 1464. 
Shortly after the correspondence of Regiomontanus and Bianchini the problem 
appears in Maestro Benedetto da Firenze’s Trattato (c.1465, pp.68-69), in the 
Pseudo-dell’Abbaco of 1478 (ff. 69r-69v) and in Piero della Francesca’s Trattato 
d’abbaco of c. 1480 (f.122). For its later history and influence on Gauss see 
Bullynck 2008. 
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And after division by the five there remains 3 for which you keep three 
times 21, that is 63, which you add to the aforesaid 35; there will be 98. 
After the division by the seven there remains 4 for which you retain 
quadruple 15 that is 60 which you add to the aforesaid 98; there will be 
158 from which you throwaway 105; there will remain for you 53 which 
is the chosen number.  

In Fibonacci’s procedure the zong shu are not calculated but given and 
the yan mu are subtracted from zong shu before they are summed togeth-
er. In fact, Fibonacci’s method corresponds closely with the text of the 

Sun Zi Suan Ching for the similar problem x  ≡  2 (3),  3 (5),  2 (7).5 (Mi-
kami 1913, p. 32; further discussed below): 

In general, take 70, when the remainder of the repeated divisions by 3 is 
1; take 21, when the remainder of the repeated divisions by 5 is 1; and 
take 15, when the remainder of the repeated divisions by 7 is 1. When the 
sum of these numbers is above 106, subtract 105, before we get the an-
swer. (…) The remainder divided by 3 is 2, and so take 140. The re-
mainder divided by 5 is 3, and so take 63. The remainder divided by 7 is 
2, and so take 30. Adding these together we get 293. There from subtract 
210, and we obtain the answer.  

Libbrecht (1973, p. 240) also discusses Fibonacci’s solution and con-
cludes that he “does not give the slightest theoretical or general explana-
tion of his method of the remainder problem, and for this reason his 
whole treatment is on a level no higher than that of Sun Zi”. Needham 
(SCC, I, p. 4, p. 34) and Libbrecht (1973, pp. 241-2) mention a four-
teenth-century Byzantine manuscript of the Isagoge Arithmetica by Ni-
chomachus of Gerase which contains an appendix dealing with a problem 

                                                      
 
 
5 Martzloff 2006, p. 322 comes to the same conclusion: “In 1202, Fibonacci (..) 
proposed a solution to the remainder problem similar to that of Sun Zi, in other 
words incomparably less powerful than that due to Qin Jiushao”. 



 
 
 
 
 
96 A. HEEFFER 

finding a contrived number. The solution method as well as the recrea-
tional context is very similar to Fibonacci.  

Two additional occurrences of the problem are documented in extant 
writings before Regiomontanus in Europe.  The astronomer Giovanni 
Marliani was the teacher of Giorgio Valla and wrote a vernacular treatise 
on arithmetic.   His Arte giamata arismeticha dates from c.1417 (codex 
A. II. 39, Biblioteca Universitaria de Genova) and is described and partly 
transcribed by Gino Arrighi 1965. The remainder problem is basically the 
same as the one by Fibonacci and the limited explanation provides no 
clues concerning the knowledge of the CRT. Two other remainder prob-
lems appear in a pseudo-Paolo dell’abbaco of c.1440, with moduli 2 to 10 
and the congruences one less than the moduli and 1: 

Truova uno numero che partjto per 2 ne rjmanghi uno, e partjto per 3 ne 
rjmanghi 2, e partjto per 4 ne rjmanghj 3, e partjto per 5 ne rimanghj 4, e 
choxj per insino in 10  (Arrighi 1964, p. 95). 
Truovamj uno numero che partjto per 2 ne rjmanghj uno, e partjto per 3 
ne rjmanghi uno, e partjto per 4 ne rimanghj uno, e partjto per insino in 10 
(Arrighi 1964, p. 96). 

Now, these two problems are quite interesting as the author seems to have 
heard of these or similar remainder problems but he does not know the 
answer or the method of the CRT. For the first problems he gives the 
answer 3628799 and for the second 75601. Both solutions are valid, but 
of course not the smallest integral solutions as provided by the CRT me-
thod, 2521 and 2519 respectively. The author solves the first problem by 
multiplying all the moduli and subtracting one: 

Fa’ choxj e di’: in che si truova il 2 e ’l 3 e ’l 4 e ’l 5 e ’16 e ’l 7 e ’l 8 e ’l 
9 e ’l 10? E però multjpricha 2 via 3, fa 6, e 4 via 6, fa 24, e 5 via 24, fa 
120, e 6 via 120, fa 720, e 7 via 720, fa 5040, e 8 via 5040, 40320, e 9 via 
40320, fa 362880, e 10 via 362880, fa 3628800. E ora puoj dire: jo òe 
trovato uno numero che partjto per 2 no’ rrimane alchuna choxa, e partjto 
per 3 no’ rimane nulla e choxj per 4, per 5, per 6, per insino in 10. E ora 



 
 
 
 
 
REGIOMONTANUS &  CHINESE MATHEMATICS 97 

di’: traendo uno di questo numero, si nne verrà da xxezzo 1 meno che nel 
numero nel quale io ò partjto, uno di questo numero cioè di 3628800 che 
rresta 3628799 e questo numero è desso. 

For the solution to the second problem he finds 7560 as a common mul-
tiple, though not the least common multiple, and adds one, and 7561 in-
deed is a solution. He then claims that 75601 is “ a more secure solution”.   
While we can relate some remainder problems to the Arabic tradition and 
Fibonacci, it seems that such kind of problems were known, discussed 
and solved by methods which do not reflect any knowledge of the da yan 
rule. The occurrences of the problems as discussed here exhaust all our 
published sources of abbaco texts. Convinced that there had to be found 
something more we looked at a number of previously unpublished manu-
scripts. We will come back to the abbaco tradition in a further section. 
First we look at the problem in German cossic texts. Its appearance is 
unnoticed by Menzies but could be used as an argument in favour of his 
first premise.  

 

4.2 The cossic tradition 

In a classic overview of fifteenth-century algebra in Germany Maximilian 
Curtze points out that by the middle of the fifteenth century the CRT was 
a well known subject.6 As evidence he refers to the Deutsche Algebra, the 
manuscript 14908 of the State library in Munich written in a mixture of 
German and Latin. Curtze names the author Gerhard, but it is since then 
established that it is the monk Fredericus Amann who authored the text in 
1461 (Folkerts 1996, Gerl 1999, Gerl 2002 and Vogel 1981). While this 
                                                      
 
 
6 Curtze 1895, p. 65 note: “ Ich will jetzt hier den Beweis führen, dass um die 
Mitte des 15. Jahrhunderts sie mit ihrem Beweise und ohne Benutzung des chine-
sischen Beispiels eine ganz bekannte Sache war”. 



 
 
 
 
 
98 A. HEEFFER 

treatise was written two years before the correspondence between Regi-
omontanus and Bianchini it still is difficult to establish who got it from 
whom. According to Folkerts (1996, 26) Fredericus based his text on the 
still unpublished Regiomontanus’s manuscript on algebra written in 1456, 
Columbia University, Plimpton 188, (ff. 82v-96r). However, the algebra 
problems by Fredericus run from ff. 133v-157r and the method for solv-
ing the CRT is discussed on the preceding pages (124v-125r, Curtze 
1895, p. 65). Though we do not have a transcription of Regiomontanus’s 
problems we know that it includes one remainder problem (problem 60, f. 
93r). According to Folkerts 2002, p. 421, it is “equivalent” to the problem 
in his correspondence. If at all Regiomontanus had a general method for 
solving remainder problems, which cannot be established from the cor-
respondence, it is safe to assume that he and Amann used the same me-
thod. As we have a transcription available of Amann’s solution let us 
therefore take this as a reference. In a curious mixture of old German and 
Latin, Amann provides the following solution to the problems with mod-
uli (3, 5, 7) (Curtze 1895, p. 65; Vogel 1954, pp. 120-1): 

Item ich wil wissen, wie vil pfenning in dem peutel odor im synn hast. 
Machs also. Hays yn dy dn, dy er hat, zelen mit 3, darnach cum 15, postea 

cum 7, vnd alz oft eins vber pleibt mit 3, so merck 70, vnd alz oft 1 vber 
pleibt mit 5, merk 21, vnd mit 7, merk 15. Postea adde illos numeros in 

simul, et ab ista summa subtrahe radicem, hoc est multiplica 3 per 5 et 7 

erit 105, als oft du magst, vnd wz do pleibt, alz vil hat er ym sinn oder in 
peutel.  

Amann further lists a table with the moduli (2, 3, 5), (3, 4, 5), (3, 4, 7), (2, 
3, 7), (2, 7, 9), (5, 6, 7), (5, 8, 9) and (9, 11, 13) including the least com-
mon multiple of the moduli and but not what the Chinese called yen shu. 
So for the moduli (3, 5, 7), Amann gives 105 and then the numbers 70, 
21, 15 instead of the yen shu 35, 21 and 15. We can thus conclude that 
Amann  – and possibly Regiomontanus – followed the method of the Sun 

Zi Suan Ching also employed by Fibonacci instead of the one described 
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in the Shù shū Jiǔ zhāng. As the method for solving remainder problems 
in fifteenth-century Europe is different from the superior one discussed in 
the Shù shū Jiǔ zhāng it can actually be interpreted as evidence against 
the hypothesis posed by Menzies: 

Premisses: 1) If Regiomontanus knew the general solution to the 
CRT as explained in the SSJZ  he would have used it.  
2) Regiomontanus (and Amann) did not use the method 
of the SSJZ. 

Conclusion:  Therefore Regiomontanus had no knowledge of the 
SSJZ. 

4.3 The rule of numbers with no end 

From a study of a number of unpublished manuscripts we discovered that 
remainder problems were treated already in the Italian abbaco tradition 
since the fourteenth century. We identified a family of at least six manu-
scripts which contain a table with remainders for moduli 3, 5 and 7. The 
table is listed in relation to one in a series of remainder problems. The 

purpose of that problem is to find numbers that satisfy x  ≡  2 (3),  3 (5),  
1 (7). The unpublished manuscripts containing the table are the following 
(including sigla and folio location): 

• Z (c. 1395) Florence, BNC, Conv.Soppr.G7.1137, Inc. “Queste 
sonno le fegurre nostre dello aboccho ceh le guagli tu pot inscri-
vere qualunque numero tu vogli..” (corsiva mercantesca formata) 
ff. 241r-241v 

• α (c.1417), a lost archetype of which the following are derived 
copies; the table of contents in a later copy points to ff. 141  

• A (c.1433) Florence, BNC, Magl. Cl. XI. 119, Inc: “Concio sia 
cosa che sono nove figure nell’abacho per le quali chi conoscie 
quelle agievolmente conosciera poi l’altre ..” (neat corsiva can-
cellaresca formata) ff. 141(?) 
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• B (c1440) Florence, Biblioteca Mediceo-Laurenziana, Ash. 608, 
Inc: “Concio sia chosa che sono nove fighure nel abacho per le 
quali chi chonoscie quele agievolmente chonosciera poi l’altre ..” 
(rapid corsiva mercantesca) ff. 101v-106r 

• C (c1440) London, BL, Add. 10363, Inc: “Concio sie cosa che 
son 9 fighure nell’abbaco per le quali chi chonoscie quelle age-
volmente conosciera poi l’altre …”, (very neat humanistic boo-
khand) ff. 149r-152r 

• E (1442) London, BL, Add. 8784, Inc: “E choncio sia chosa che 
sono 9 fighure nell’abacho per le quale chi conosce quelle agie-
volmente conoscera poi l’altre...”,  (fairly neat Italian Gothic bo-
okhand, by Agostino di Bartolo) ff. 138v-140v 

 
The manuscripts α and A to E are part of a related family of copies of an 
abbaco treatise which is described in Heeffer 2008. We will here use the 
same sigla. The table (see figure 2) in its earliest form is contained in a 
zibaldone (an author’s notebook, hence Z) from the end of the fourteenth 
century. All the cited manuscripts contain the table and the main problem 
to find 11 numbers which satisfy the congruence relation. The solution is 
listed (8, 113, 218, 323, 428, 533, 638, 743, 848, 953 and 1058) and it is 
verified that they have the same remainders for the three moduli 3, 5  and 
7 but apart from the table no method is presented. 
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Figure 2: Table of remainders for moduli 3, 5 and 7 (used with 

permission © The British Library Board, ms. Add.10363 ff. 152rv) 

 
These texts therefore show no evidence of any knowledge of the da yan 
rule, not even the limited version from the Liber abbaci. The table starts 
from 8 and runs to 113, the first two numbers in the congruence set. The 
accompanying text explains how to generate additional solutions.  First it 
is observed that if you add one to the solutions 8 and 113, the numbers 9 
and 114 will have the same remainders for moduli 3, 5 and 7. When you 
add 2, 3 and more, the resulting numbers will also have the same rea-
minders. Thus when one adds the difference between 8 and 113 (which is 
105) to 8 and to 113, the remainders will also be the same. This allows us 
to generate infinitely many numbers with the same remainders for a given 
set of moduli. In fact, as far as we know, the reasoning is the earliest in-
stance of mathematical induction in European writings (Heeffer 2010). 
Because of the demonstrated infinity of possible solutions the rule is 
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called “la reghola del numero sanza fini” or the rule of numbers with no 
end. 

We remark that the limited knowledge about remainder problems in 
these manuscripts is sufficient to explain the reasoning of both Regi-
omontanus and Bianchini in their correspondence. There are infinitely 
many solutions and these solutions are in an arithmetical progression. 
This undermines Menzies’s argument since all what Regiomontanus 
needed to know was available already in fourteenth-century Italy. 

4.4 Earlier sources in Asia 

A typical fallacy of Menzies’s argumentation is that he was looking for 
an explanation which necessarily involves Chinese knowledge, sources or 
artifacts which supposedly have been disseminated through a hypotheti-
cal visit of the Chinese in Italy in 1434. He therefore looks for Renais-
sance sources after 1434 and tries to match them with Chinese ones be-
fore that date ignoring all other contextual explanations. In our case he 
matches a very specific problem from the correspondence of Regiomon-
tanus with one specific Chinese book. We will now show that the CRT 
was known long before Shù shū Jiǔ zhāng. 

It is generally acknowledged by historians of Chinese mathematics 
that remainder problems grew out of calendar calculations in China dur-
ing the third century. The problem of finding a common cycle for the 
lunar months and the tropical year can be formulated as finding a period 
of N days in which  

)(mod)(mod)(mod 321 YrLrDrN ≡≡≡  
 

with D as the length of a day, L the duration of a lunar month and Y 
the duration of a tropical year and the r i as the remainders. The zhāng 

cycle (章) of 19 tropical years corresponding with 235 lunar months was 

determined in China already in the sixth century BC. Such a cycle was 
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also known by the Babylonians around 500 BC and by the ancient Greeks 
(Meton at 432 BC). 

Remainder problems appear in different forms but usually within a 
practical setting. The earliest extant source dealing with such problems is 

the Sun Zi Suan Jing (孙子算经, Master Sun’s Arithmetical Manual, c. 

400). An English translation and discussion is given by Lam Lay Yong 

2004. Sun Zi describes the problem x  ≡  2 (3),  3 (5),  2 (7) (Chap. 3, 
prob. 26, p. 10b, also translated and discussed by Needham (SCC, III, p. 
119), Mikami 1913, p. 32, Li and Du 1987, p. 93, Libbrecht 1973, p. 
269). Remainder problems are also known in India, and first appear in the 

Āryabhaṭīya of Āryabhaṭa (of 499) where they are solved by the kuṭṭaka 
or pulverizer method (Clark 1930, pp. 42-50, Datta and Sing 1934, pp. 
87-99, pp. 131-133, Libbrecht 1973, p. 229). In the 

Brāhmasphuṭasiddhānta by  Brāhmagupta of 628 the method is applied 
within the context of astronomy (Colebrooke 1817, pp. 326-7). In the 

Bījagaṇita of 1150 Bhāskara II uses algebra to calculate the solution 
(Chap. VI, stanzas 160 & 162, Colebrooke 1817, pp. 235-239). Although 
remainder problems are rare in Arabic treatises they were known by Ibn 

al-Haitam (c.1000), in particular the problem x  ≡  1(2, 3, 4, 5, 6),  0(7),  
as discussed by Wiedemann 1892, Libbrecht 1973, pp. 234-5, and Rashed 
1994. Libbrecht points our attention to the similarity of the Arabic and 
Indian solutions.  

5 Transmission from China to Europe 

We concluded that Regiomontanus did not get his knowledge of the CRT 
from the Shù shū Jiǔ zhāng. Without conceding to Menzies’s claim that 
Chinese knowledge about mathematics was passed on to Europe through 
a visit during the fifteenth century, some questions remain.  How did he 
and other Europeans like Fibonacci learn about the remainder problems 
and possible ways to solve them? The close correspondence between the 
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remainder problems in the Sun Zi Suan Ching and Fibonacci’s Liber Ab-
baci remains puzzling. 

As with regard to transmission between cultures the Western historio-
graphy is deeply influenced by the humanist prejudice that all higher 
intellectual culture, in particular all science, had risen from Greek soil. A 
most typical example is the monumental and influential four-volume 
work on the history of mathematics by Moritz Cantor (1880-1908). Like 
many men of his era Cantor was entrenched with humanist ideas about 
the cultural superiority of Western knowledge. For example, when deal-
ing with Hindu algebra Cantor takes every opportunity to point out the 
Greek influences on India. Some examples: the Indians learned algebra 
through traces of algebra within Greek geometry; Brāhmagupta’s solution 
to quadratic equations has Greek origins; or the Indian method for solving 
linear problems in several unknowns depended on the Greek method of 
Epanthema and so on.7 However, when he comes to the CRT, Cantor 
writes the following:8 

It is not impossible that the Chinese problem and its solution could have 
become known somewhere by a Byzantine who took note of it, possibly 
through Arabic mediation. The reverse course, which is so often the case, 
where Western knowledge penetrates China, is here hardly possible, be-
cause it is only in Chinese texts that the explanation of the procedure is 
provided, quite difficult to understand, but comprehensible nevertheless, 
as experience has shown us. 

                                                      
 
 
7 See Heeffer 2009 for a discussion on the reception of the first translations of 
Hindu classics on mathematics.  
8 Cantor (I, p. 644) “Es ist nicht unmöglich, dass die chinesische Aufgabe und 
ihre Auflösung etwa durch arabische Vermittlung irgend einem Byzantiner 
hekannt geworden sein kann, der sie sich aufnotirte. Ein umgelrehrter Gang, dass 
also hier wie so vielfach im Westen Bekanntes nach China drang, ist kaum 
anzunehmell, weil nur im chinesischen Texte die Begründung des Verfahrens 
angedeutet ist, freilich schwer zu verstehen, aber doch zu verstehen, wie die 
Erfahrung gezeigt hat.” (my translation). 
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This is one of the few instances were Cantor admits an influence from the 
East to the West although he is puzzled about how such a transmission 
could have taken place. The whole of his Vorlesungen solely depends on 
written sources. He knew about the Byzantine manuscript we cited before 
and did not know of any Arabic sources dealing with remainder prob-
lems. The quotation reflects perfectly the current knowledge about writ-
ten resources at that time. So does Menzies also rely on written sources is 
his latest book. 

However, remainder problems do not solely belong to the scholarly 
domain of mathematics, the kind of mathematics that supported the state 
and bureaucracy of ancient China. They also have a clear recreational 
value. These problems and their solutions belong to what Jens Høyrup 
has coined as sub-scientific mathematics. The narration of stories, riddles 
and recreational puzzles is the most important factor in the transition of 
arithmetical problems and their solution methods between generations, 
cultures and continents. They are passed on through oral traditions from 
master to apprentice and are mostly situated in the practices of merchants, 
lay surveyors and craftsmen. To get a grip on the oral tradition I proposed 
elsewhere a concrete implementation for sub-scientific knowledge in the 
form of proto-algebraic rules (Heeffer 2007). A proto-algebraic rule is a 
procedure or algorithm for solving one specific type of problem. Our 
main hypothesis is that many recipes or precepts for arithmetical problem 
solving, in abbacus texts and arithmetic books before the second half of 
the sixteenth century, are based on proto-algebraic rules. We call these 
rules proto-algebraic because they are or could be based originally on 
algebraic derivations. Yet their explanation, communication and applica-
tion do not involve algebra at all. Proto-algebraic rules are disseminated 
together with the problems to which they can be applied. The problem 
functions as a vehicle for the transmission of this sub-scientific structure. 
Little attention has yet been given to sub-scientific mathematics or proto-
algebraic rules. We provided a framework for identifying proto-algebraic 
rules which are common to Renaissance and Indian arithmetic and alge-
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bra. Some Chinese rules such as of Yíng bù zú ‘excess and defi-

cit’(盈不足) definitely fall under this category.9  

The recreational aspect of remainder problems is prominent from its 
earliest occurrence. Libbrecht 1973 provides a comprehensive overview 
of all Chinese sources and we note that several formulations of the prob-
lem are in verse and belong to the recreational domain. General Hán 

Xìn’s method of counting soldiers (韩信乱点兵) is a cryptical formula-

tion of a remainder problem but we can recognize the multipliers 70, 21 
and 15 and the least common multiple 105 of moduli 3, 5 and 7, which 
occurs in many of the problems already cited. Hán Xìn was a general of 
Emperor Liu Bang of the Han Dynasty and lived around 200 AD: 

Not in every three persons is there one aged three score and ten, 
On five plum trees only twenty-one boughs remain, 
Every fifteen days rendezvous the seven learned men, 
We get our answer by subtracting one hundred and five over and again. 

The folk rhyme is still known in the oral tradition today by many Chinese 
and also Japanese.  Li and Du 1987, pp. 93-94 discuss several other ver-
sions over the next centuries. Libbrecht 1973, p. 286 quotes a stanza from 
the Zhiyatang zachao, written in 1290 by Zhou Mi: 

A child of three years old [when the father] is seventy, it is rare. 

                                                      
 
 
9 The problem appears already in the earliest extant Chinese treatise, the Suàn 
shù shū  (筭數書) or ‘Writings on reckoning’: “In sharing cash, if [each] person 
[gets] 2 then the surplus is 3. If [each] person [gets] 3 then the deficit is 2. Ques-
tion: how many persons, and how many cash? Result: 5 persons and 13 cash”. 
Christopher Cullen (2004, 81-88), who published the transcription of this trea-
tise, identifies this rule with the rule of false position. However, the rule of false 
position, also known in Chinese arithmetic, is commonly considered as a general 
method for solving linear problems of the type ax = b. The Yíng bù zú however 
corresponds with the Indian rule gulikā-antara or the regula augmenti in Euro-
pean arithmetic, for problems of the form ax + b = cx – d   (Heeffer 2007, 15-21).  
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At five to leave behind the things of 21, it is even more rare. 
At seven one celebrates the Lantern festival, again they meet together. 
The Cold meal holiday [on the 105th day] then you will get it. 

Again we recognize the numbers of Master Sun’s original problem in a 
form which facilitates the recollection of the base numbers to solve prob-
lems for moduli 3, 5 and 7. Alexei Volkov 2002, p. 402 describes a Viet-
namese mathematical work of the fifteenth century Toan phap dai thanh 
in which a similar verse appears. So, with these examples we find evi-
dence that the problem travelled in South-East Asia in the form of folk 
rhymes. As to its influence on Hindu mathematics opinions vary, with 
Indian scholars favoring the precedence of India over China. As men-

tioned before, remainder problems in India are known as kuṭṭaka or pul-
veriser problems and are very prominent in scholarly texts on mathemat-
ics and astronomy. However, any sensible analysis, as Libbrecht 1973 
does in his chapter 18, must come to the conclusion that the methods 
differ too widely to assume any influence from the one side to the other. 

However, the difference between the kuṭṭaka and the da-yen method do 
not exclude that the recreational version of the Chinese problem circu-
lated in India. The early classic period of mathematics in India is charac-
terized by the merging of two traditions, the scholarly astronomical tradi-

tion to which the Āryabhaṭīya belongs, with the sub-scientific tradition of 
merchant and surveying mathematics, such as the Bakhshālī Manuscript 

Hayashi 1995. The kuṭṭaka method belongs to the first, the recreational 
version would fit in the second tradition. 

We finally come to the question of how the problem came to Europe. 
As we remarked already the treatment by Fibonacci very well reflects the 
Chinese method of Master Sun and bears little relation with methods 
from Hindu arithmetic. On the other hand, problems such as that of men 
finding a purse, where Fibonacci deals with many variants in the Liber 
Abbaci and the Flos seem to have originated in India (Heeffer 2007). If 
we look at the context in which the two remainder problems are discussed 
in the Liber Abbaci it comes as no coincidence that Fibonacci treats them 
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within a series of recreational problems. The section called de quibusdam 
divinationibus concerns divination problems in which a number or object 
has to be guessed (Boncompagni 1857, I, p. 303; Sigler 2002, p. 427). 
Such number divination or combinatorial divination problems were quite 
popular in Medieval Europe. Menso Folkerts (1968) found many in-
stances in a study of 32 fourteenth and fifteenth century Latin manu-
scripts. Also the German text by Fredericus Amann, cited earlier, sets the 
remainder problem as a divination problem: “I wish also to know how 
many coins he has in his purse or in his mind” (translation by Libbrecht 
1972, pp. 244-5). After Regiomontanus we find remainder problems 
treated as part of divination problems in Luca Pacioli’s Viribus Quantita-

tis (c. 1500, problems 22 to 25, Peirani 1997), as well as in the seven-
teenth-century works Problèmes Plaisantes by Bachet  1612 (problem V) 
and the Recréations Mathématiques ([Leurechon] 1624, problems 51, 
52). The problem continues to appear in books on recreational mathemat-
ics during the following centuries. Our suspicion that the Chinese re-
mainder problem travelled to Europe as part of an oral tradition is par-
ticularly difficult to prove. However, the recreational version of the prob-
lem, being part of this oral tradition of challenging others with riddles and 
puzzles, would not be out of place on the trade routes from East to West.  
We do not have to assume a single visit of a Chinese delegation in Italy in 
1434 to explain the fact that mathematical knowledge travels between 
cultures and continents. Mathematics, being a product of culture, has 
been exchanged between cultures for centuries, together with other arti-
facts and products of cultures.  

6 Conclusion 

We have demonstrated that the argumentation for an epistemic claim by 
Menzies is fallacious. Menzies claims that Regiomontanus had know-
ledge of a Chinese book written in 1247 because he could solve remaind-
er problems in 1463. The structure of the argument and the reason for its 
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failure applies to many similar claims in the book. We have shown that 
some of Menzies premises cannot be proved from historical sources, in 
our case the claim that Regiomontanus knew the CRT. But even if we 
would accept his premises then his conclusion – throughout his book 
being the dependence of Renaissance scholars on Chinese sources –  does 
not necessarily follows. For all of his claims there are contextual histori-
cal sources which provide a more acceptable explanation than his wild 
speculation that the Chinese visited Renaissance Italy in 1434. We have 
provided two lines of explanations: 1) new historical evidence for solving 
remainder problems within the abbaco tradition which is sufficient to 
account for Regiomontanus’s solutions, and 2) the existence of an oral 
tradition of telling stories and riddles travelling along the silk route which 
could have included mathematical problem solving methods such as the 
CRT. 
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