WHAT PROBLEM OF UNIVERSALS?

Jan Willem Wieland

ABSTRACT

What is the Problem of Universals? In this paper we take up the classic question and proceed as follows. In Sect. 1 we consider three problem solving settings and define the notion of problem solving accordingly. Basically I say that to solve problems is to eliminate undesirable, unspecified, or apparently incoherent scenarios. In Sect. 2 we apply the general observations from Sect. 1 to the Problem of Universals. More specifically, we single out two accounts of the problem which are based on the idea of eliminating apparently incoherent scenarios, and then propose modifications of those two accounts which, by contrast, are based on the idea of eliminating unspecified scenarios. In Sect. 3 we spell out two interesting ramifications.

1. Problem solving

‘What problem?’ In any debate, this is one of the first methodological questions that can always be posed. What is it that we are trying to deal with? Or again: what are we doing here? So let us take a closer look at what problems, in all generality, consist of, and define the notion of problem solving accordingly. Consider the following three problem solving settings.

Case 1. You are thirsty, and you want to quench your thirst. The problem, here, consists of two elements: a state (i.e. your thirst), and a desire to get rid of this state. Alternatively: the problem consists of the

1 With thanks to Erik Weber and an anonymous referee for many helpful comments. The research for this paper was supported by the Research Fund Flanders through research project no. G.0158.05.
state, and a desire to obtain the absence of the state. There is a problem primarily because of the second element: there is nothing to be solved if you do not care about your thirst (or if you care about your thirst in another way). In the range of possible solutions we find beer. If you drink a beer, you are not thirsty any longer and the problem is solved.

Case 2. You are thirsty, and you want to know why. The problem, again, consists of two elements: a state (i.e. your thirst), and a desire to eliminate your ignorance about this state. Alternatively: the problem consists of the state, and a desire to obtain more information about it, e.g. to uncover its causes or features. Again, there is a problem primarily because of the second element: there is nothing to be solved if you do not care about your ignorance (or if you care about your ignorance in another way). In the range of possible solutions we find the scenario that your thirst is caused by the fact that you are running around for some time. If you acquire this piece of knowledge, you are not ignorant any longer (at least with respect to one important cause of your thirst) and the problem is solved.

Case 3. You are thirsty, and you do not understand why because you stopped running around a while ago and just had your beer. The problem, again, consists of two elements: a state (i.e. your thirst), and a desire to get rid of your wrong expectations about this state. Alternatively: the problem consists of the state, and a desire to bring about coherence between your beliefs and the state at issue, i.e. between the belief (and the related expectation) that normally when you drink something you quench your thirst and the state that you, despite the beer, are still thirsty. Again, there is a problem primarily because of the second element: there is nothing to be solved if you do not care about your wrong expectations (or, again, if you care about your wrong expectations in another way). In the range of possible solutions we find the scenario that your thirst is caused by the beer you had. If you acquire this extra information, the situation is not incoherent any longer, and the problem is solved.

Let us single out the connection between the three cases. In one sense, they are all about the elimination of scenarios. In the first case it is about the elimination of an undesirable scenario. In the second it is about the elimination of a vague, unspecified scenario. In the third it is about the elimination of an apparently incoherent (i.e. impossible) scenario. In another sense, the three cases are all about the obtaining of scenarios. In the first it is about the obtaining of a desired scenario. In the second it is
about the obtaining of a specified scenario where things have been made explicit. In the third it is about the obtaining of a coherent scenario where apparent contradictions or counterexamples have been resolved. Summing up, problem solving can be defined as follows:

(PS-1) Problem solving is the enterprise of eliminating (i) undesirable, (ii) unspecified, or (iii) seemingly incoherent scenarios, i.e. of obtaining (i) desired, (ii) specified, or (iii) coherent scenarios.

What the three cases furthermore have in common is that they consist of a particular state plus a particular desire. In all three cases the state is the same: you are thirsty. Call this state X. The cases differ as to what you want from X. In the first you simply want X’s absence. In the second you want information about X. In the third you want to bring about coherence between your beliefs and X. These desires can be associated with certain problem solving tasks: (i) remove X, (ii) acquire information about X, (iii) make your beliefs coherent with X. On the basis of this, problem solving can also be defined as follows:

(PS-2) Problem solving is the enterprise of carrying out one of the following tasks with respect to a certain state X: (i) remove X, (ii) acquire information about X, or (iii) make your beliefs coherent with X.

I am not sure whether one of the three tasks is more important or primitive than the other two, i.e. that they can be cashed out in terms of one another, and it is not unlikely that there are more kinds of things you may want from X. If so, the definitions have to be modified accordingly. Also: how is it possible that problems have both a subjective and an objective side? On the one hand, they are subjectively motivated (you want something from a certain state), and there are no problems without this element. On the other, we can discover problems, and not just create

2 Interesting observations of the referee: (i) problems of the first variety are different from the others in that there is nothing to be found out (except perhaps how to remove X), i.e. no questions to be answered; (ii) problems of the third variety are different from the others in that they are real conundrums.
them, and they may have solutions with objective validity (the same solution can work for others with a similar problem). And there are more interesting topics that cannot be dealt with here. In the next section we apply the general observations on problem solving so far to the Problem of Universals in metaphysics.

2. Problems of Universals

As Armstrong introduces the Problem of Universals:

In some minimal or pre-analytic sense there are things having certain properties and standing in certain relations. But, as Plato was the first to point out, this situation is a profoundly puzzling one, at least for philosophers. (1978: 11)

The question is: what, actually, is so puzzling? It is rather strange that this question has been asked only incidentally, while discussion of the solutions to the Problem of Universals prevails in metaphysics (the Realism versus Nominalism debate). What are Realism about Universals, Class Nominalism, Ostrich Nominalism, etc. doing there? What is it that they are trying to solve? In this section I first single out two different answers to this question which are both based on the idea of eliminating apparently incoherent scenarios (2.1-2.2), and then formulate modifications of those two accounts which are, by contrast, based on the idea of eliminating unspecified scenarios (2.3).

2.1. One over Many

The classic account:

The same property can belong to different things. The same relation can relate different things. Apparently, there can be something identical in things which are not identical. Things are

3 The phrase derives, of course, from Plato: “It’s as if you were to cover many people with a sail, and then say that one thing is over many.” (Parmenides 131c, transl. Rickless 2007: 58)
one at the same time as that they are many. How is this possible?
(Armstrong 1978: 11)

According to this account, there is an apparent contradiction between the fact that things are different from each other and the fact that they can have the same properties, and the problem would consist in the task of eliminating this seemingly incoherent scenario. The relevant state, in this case, is: the items x, y, etc. have the same property F.\footnote{Or stand in the same relation R. As usual, this qualification will not be repeated, so everything I say about properties equally applies to relations.} The conflicting belief is: x, y, etc. are distinct items. The belief conflicts with the state, if so, because of our initial expectation that distinct items cannot have the same property. The problem solving task is to make the conflicting belief coherent with the state, and to revise our initial expectation. Put in terms of a question:

(OOM) How is it possible that x, y, etc. have the same property F, given the fact that x, y, etc. are distinct items?

For instance, how is it possible that Do Make Say Think, The Notwist and Jaga Jazzist all have the very same property of being a band, given the fact that they are three distinct items?

2.2. Many over One

Rodriguez-Pereyra (2002a: 46-7) presents a slightly different account: there is an apparent contradiction between the fact that things are identical with themselves and the fact that they have many different properties, and the problem would consist in the task of eliminating this seemingly incoherent scenario. The relevant state, here, is: item x has many properties F, G, etc. The conflicting belief is: x is one item identical with itself. The belief conflicts with the state, if so, because of our initial expectation that one single item cannot have many properties. The problem solving task is to make the conflicting belief coherent with the state, and to revise our initial expectation. Put in terms of a question:
(MOO) How is it possible that x has many properties F, G, etc., given the fact that x is a single item identical with itself?

To use the very same words of Armstrong: “Things are one at the same time as that they are many. How is this possible?” For instance, how is it possible that Do Make Say Think has the property of being a band, and the property of being multi-membered, and the property of bringing out music under titles like ‘You, You’re a History in Rust’ and ‘The Whole Story of Glory’, etc.?

2.3. Modifications

These two accounts, i.e. the OOM and MOO, are in the right direction, I take it, but inadequate. The point is that it is not the incoherence that is doing the work. The incoherence is easily resolved by way of conceptual analysis (cf. MacBride 2002). More specifically, the incoherence disappears as soon as we focus upon the distinction between numerical identity and distinctness on the one hand, and qualitative identity and distinctness on the other. Items can be numerically distinct and yet qualitatively identical (i.e. have the same property). Likewise: one single item can be numerically identical and yet qualitatively distinct (i.e. have different properties). These are two perfectly coherent scenarios.

However, if the solution to the Problem of Universals were this easy, there would be no need for complete theories like Realism about Universals or Resemblance Nominalism. There is more going on. Rodriguez-Pereyra (2002b: §4) suggests that we, in addition, have to spell out what qualitative identity and distinctness consist in. This is right. But then it is not the incoherence that drives the problem solving task. Spelling out what qualitative identity and distinctness consist in has nothing to do with the elimination of apparent contradictions.

My suggestion is that the problem solving task is motivated by the situation’s vagueness. That is, the Problem of Universals is a demand for specification, for a certain kind of information. As is well known, this information is not about causes, and hence the problem solving task is not one of eliminating unspecified causes (cf. Oliver 1996: 9). For instance, the problem is not about what causes the fact that Do Make Say Think, The Notwist and Jaga Jazzist all have the same property of being a band, or about what causes the fact that Do Make Say Think has the
many properties of being a band, of being multi-membered, and of bringing out music under titles like ‘You, You’re a History in Rust’ and ‘The Whole Story of Glory’. Nevertheless, the problem might be taken as a demand for information about unspecified identities and differences among facts.

Take the fact that Do Make Say Think has the property of being a band. Just like any other fact, this is one fact among many.\(^5\) Then pick out its contrasting facts. In this case we have the contrasting fact that Jaga Jazzist has the property of being a band, and the contrasting fact that Do Make Say Think has the property of being multi-membered, among many others. If we ask about qualitative identity and distinctness, we want to know two things. First question: what is the identity between the fact that Do Make Say Think has the property of being a band and the fact that Jaga Jazzist has the property of being a band? We would expect an objective, worldly identity among these facts. So in virtue of what are they identical? What are the identity makers? This is the question about qualitative identity. The second question is this: what is the difference between the fact that Do Make Say Think has the property of being a band and the fact that Do Make Say Think has the property of being multi-membered? We would expect an objective, worldly difference among these facts. So in virtue of what are they different? What are the difference makers? This is the question about qualitative distinctness.

At this very point theories like Realism about Universals and Resemblance Nominalism enter the stage. According to e.g. Realism about Universals, the identity between the fact that Do Make Say Think has the property of being a band and the fact that Jaga Jazzist has the property of being a band is that both Do Make Say Think and Jaga Jazzist exemplify the universal being a band; and the difference between the fact that Do Make Say Think has the property of being a band and the fact that Do Make Say Think has the property of being multi-membered is that in the former case Do Make Say Think exemplifies the universal being a band, in the latter case Do Make Say Think exemplifies the universal being multi-membered, and these two universals are non-identical. Or according to Resemblance Nominalism, the identity

\(^5\) By a ‘fact’ I just mean one thing having a property, or several things standing in a relation. No commitments here as to their precise nature.
between the fact that Do Make Say Think has the property of being a band and the fact that Jaga Jazzist has the property of being a band is that both Do Make Say Think and Jaga Jazzist resembles all bands; and the difference between the fact that Do Make Say Think has the property of being a band and the fact that Do Make Say Think has the property of being multi-membered is that in the former case Do Make Say Think resembles all other bands, in the latter case Do Make Say Think resembles all other multi-membered items, and the group of bands and the group of multi-membered items are non-identical.

It can be pointed out that the question about qualitative identity is a modification of the OOM, and the question about qualitative distinctness is a modification of the MOO. As said, the OOM and MOO are based on the idea of eliminating apparently incoherent scenarios. Their modifications (which I shall dub OOM* and MOO* from now on) are rather based on the idea of eliminating unspecified scenarios. Let us formulate OOM* and MOO* in full generality:

\[
\text{(OOM*)} \quad \text{For any items } x, y \text{ and all properties } F, \text{ if } x \text{ is } F \text{ and } y \text{ is } F, \text{ what is the identity between these two facts?}
\]

\[
\begin{array}{c}
\text{Fx} \\
\text{identity} \\
\text{Fy}
\end{array}
\]

\[
\text{(MOO*)} \quad \text{For any item } x \text{ and all properties } F, G, \text{ if } x \text{ is } F \text{ and } x \text{ is } G, \text{ what is the difference between these two facts?}
\]

\[
\begin{array}{c}
\text{Fx} \\
\text{difference} \\
\text{Fy}
\end{array}
\]

It can be shown that any solution to the Problem of Universals holds these identities and differences to be specifiable (whether this be in terms of exemplification of universals, or resemblances, as we saw, or in terms of possession of tropes, class membership, falling under predicates, or

6 Compare both with Armstrong’s question: “What distinguishes the classes of tokens that mark off a type from those classes that do not?” (1989: 13)
what have you), except the theory which goes under the name Ostrich Nominalism (Armstrong 1978: 16; Rodriguez-Pereyra 2002a: §3.1). The Ostrich* (i.e. the sceptic about OOM* and MOO*) maintains that the identity between the fact that \(x \) is F and the fact that \(y \) is F and the difference between the fact that \(x \) is F and the fact that \(x \) is G is brute and unspecifiable. That is, according to this theory there would be no informative answer to the question about the identity between the fact that Do Make Say Think has the property of being a band and the fact that Jaga Jazzist has the property of being a band, nor about the difference between the fact that Do Make Say Think has the property of being a band and the fact that Do Make Say Think has the property of being multi-membered. Any other solution to the Problem of Universals, however, does have something to say here. Moreover, by the OOM* and MOO* their whole problem solving task is to have something to say here.\(^7\)

3. Ramifications

In this section we spell out two ramifications of the foregoing: one about explanation in metaphysics (3.1), and one about infinite regresses (3.2).

3.1. Explanation

Consider the explanatory claim:

\[(E) \quad x \text{ is F because } Z.\]

where \(Z \) is a placeholder for what the specific solutions to the Problem of Universals have to say. More specifically, by Realism about Universals \(Z = x \) exemplifies the F-universal; by Trope Theory \(Z = x \) has a F-trope; by Resemblance Nominalism \(Z = x \) resembles all Fs; by Class Nominalism \(Z = x \) belongs to the class of all Fs; by Predicate Nominalism \(Z = x \) falls

\(^7\) One may have missed the notions of ontological commitment or truthmaking in my exposition (cf. Oliver 1996: §§17-25, Rodriguez-Pereyra 2002a: chs. 1-2). To my mind, these notions are an unhelpful detour for posing the Problem of Universals, but shall not discuss this here.
under a ‘F’-predicate; and by Ostrich Nominalism $Z = \text{of nothing.}$ If we fill out e.g. the first and third option we get:

(1) x is F because x exemplifies the F-universal.
(2) x is F because x belongs to the class of all Fs.

The question is: what do such explanatory claims amount to? What explains and what is explained? Or again: what, if anything, does ‘because’ mean in the claims (1) and (2)? If we assume that explanation in philosophy is a species of problem solving (which is the general line I am exploring here), this question can be answered as follows: ‘x is F’ in (E) is short for a certain (solved) problem, and Z in (E) is short for a certain solution. As we have seen, the Problem of Universals can be taken in at least two ways, which means that (1) and (2) can be read in at least those two ways. Here are the readings of the OOM* and MOO* respectively:

(1*) The fact that x is F and fact that y is F are identical (partly, not wholly of course) because in both cases the objects exemplify the F-universal.
(2*) The fact that x is F and fact that y is F are (partly) identical because in both cases the objects belong to the class of all Fs.

(1**) The fact that x is F and the fact that x is G are (partly) different because in the former case x exemplifies the F-universal, in the latter the G-universal.
(2**) The fact that x is F and the fact that x is G are (partly) different because in the former case x belongs to the F-class, in the latter x belongs to the G-class.

By the OOM* and MOO* ‘because’ indicates that we are eliminating unspecified identities and differences. Hopefully this partially meets the scepticism about explanation in the present context voiced by e.g. Oliver (1996: 6, 75) and Daly (2005: §2). Compare also the OOM and MOO explanations where ‘because’ indicates the elimination of apparent contradictions:
It is possible that both \(x \) and \(y \) are F because \(x \) and \(y \) can be numerically distinct and yet qualitatively identical.

It is possible that \(x \) is both F and G because \(x \) can be numerically identical and yet qualitatively distinct.

3.2. Regress

As Armstrong (1978) points out, all main solutions to the Problem of Universals are regressing.\(^8\) In this last section we spell out these regresses in some detail, and show that their course quite depends on the specific problem at issue, e.g. whether we are dealing with OOM* or MOO*.

Armstrong delivers the following key observation:

> If \(a \)'s being F is analysed as \(a \)'s having R to a \(\sigma \), then \(R\sigma \) is one of the situations of the sort that the theory undertakes to analyse. So it must be a matter of the ordered pair \(<a, \sigma> \) having \(R' \) to a new \(\sigma \)-like entity: \(\sigma_R \). If \(R \) and \(R' \) are different, the same problem arises with \(R' \) and so on ad infinitum. (1978: 70-1)

There are two important points. First: that some \(x \) has a certain property is explained by the fact that \(x \) stands in a certain relation \(R \) to a second item \(\sigma \). For instance, by Realism about Universals \(R \) is the exemplification relation and \(\sigma \) is a universal, and by Resemblance Nominalism \(R \) is the resemblance relation and \(\sigma \) is a group of other items (of the same sort as \(x \)). Second: that \(x \) stands in \(R \) to \(\sigma \) can be explained in a similar way. Consider the relational variant of claim (E):

(E*) \(x \) stands in \(R \) to \(y \) because \(Z \).

Again, \(Z \) is a placeholder for what the specific solutions to the Problem of Universals have to say: by Realism about Universals (and assuming that \(R \) is non-symmetric) \(Z = \) the ordered pair \(<x,y> \) exemplifies the \(R \)-universal; by Trope Theory \(Z = <x,y> \) has a F-trope; by Resemblance Nominalism \(Z = <x,y> \) resembles all R-pairs; by Class Nominalism \(Z = <x,y> \) belongs to the class of all R-pairs; by Predicate Nominalism \(Z = \)

\(^8\) Cf. also: “But the clincher, the one argument that recurs throughout the many refutations, is the relation regress.” (Lewis 1983: 353)
\(<x, y>\) falls under a ‘R’-predicate; and by Ostrich Nominalism \(Z = \) of nothing. If we fill out e.g. the first and third option we get:

(3) \(x\) stands in R to \(y\) because \(<x, y>\) exemplifies the R-universal.
(4) \(x\) stands in R to \(y\) because \(<x, y>\) belongs to the class of all R-pairs.

The Exemplification Regress can be obtained by linking (1) and (3): \(x\) is F because \(x\) exemplifies the F-universal; \(x\) stands in the exemplification relation to the F-universal because \(<x, F>\) exemplifies the exemplification universal (\(E_{1}\)); \(<x, F>\) stands in the exemplification relation to the \(E_{1}\)-universal because \(<<x, F>, E_{1}>\) exemplifies the second-order exemplification universal (\(E_{2}\)); and so on infinitely. Similarly, the Class Membership Regress can be obtained by linking (2) and (4): \(x\) is F because \(x\) belongs to the class of all Fs (\(C_{F}\)); \(x\) belongs to \(C_{F}\) because \(<x, C_{F}>\) belongs to the class of all pairs where the one is member of the other (\(C_{M_1}\)); \(<x, C_{F}>\) belongs to \(C_{M_1}\) because \(<<x, C_{F}>, C_{M_1}>\) belongs to the class of all second-order pairs where the one is member of the other (\(C_{M_2}\)); and so on infinitely. The regresses of the other solutions to the Problem of Universals can be generated in a similar way.

But this is only half of the story. It is true that the course of the regress depends on the solution to the Problem of Universals. But it is equally true (and this has to my mind gone unnoticed in the literature) that the course of the regress depends on the construal of the problem itself. Generally, regresses are not just chains of solutions (or explanatory claims); they are chains of problem-solution pairs. As a consequence, two rather different Exemplification Regresses can be generated within Realism about Universals just by varying the problem:

Exemplification Regress OOM*-wise

(P1) What is the identity between the fact that \(x\) has the property F and the fact that \(y\) has the property F?
(S1) The fact that \(x\) is F and the fact that \(y\) is F are (partly) identical because both \(x\) and \(y\) exemplify the F-universal.
(P2) What is the identity between the fact that \(<x, F>\) stands in the exemplification relation and e.g. the fact that \(<y, F>\) stands in this relation?
(S2) The fact that \(<x,F>\) stands in the exemplification relation and the fact that \(<y,F>\) stands in this relation are (partly) identical because both \(<x,F>\) and \(<y,F>\) exemplify the exemplification universal \(E_1\).

(P3) What is the identity between the fact that \(<<x,F>,E_1>\) stands in the exemplification relation and e.g. the fact that \(<<y,F>,E_1>\) stands in this relation?

etc.

Exemplification Regress MOO*-wise

(P1) What is the difference between the fact that \(x\) has the property \(F\) and the fact that \(x\) has the property \(G\)?

(S1) The fact that \(x\) is \(F\) is (partly) different from the fact that \(x\) is \(G\) because in the former case \(x\) exemplifies the \(F\)-universal, in the latter \(x\) exemplifies the \(G\)-universal.

(P2) What is the difference between the fact that \(<x,F>\) stands in the exemplification relation \(E_1\) and the fact that \(<x,F>\) stands in some other relation \(R\)?

(S2) The fact that \(<x,F>\) stands in the exemplification relation is (partly) different from the fact that \(<x,F>\) stands in \(R\) because in the former case \(<x,F>\) exemplifies the \(E_1\)-universal, in the latter \(<x,F>\) exemplifies the \(R\)-universal.

(P3) What is the difference between the fact that \(<<x,F>,E_1>\) stands in the exemplification relation \(E_2\) and the fact that \(<<x,F>,E_1>\) stands in some other relation \(R\)?

etc.

The same can be done for e.g. Class Nominalism:

Class Membership Regress OOM*-wise

(P1) What is the identity between the fact that \(x\) has the property \(F\) and the fact that \(y\) has the property \(F\)?

(S1) The fact that \(x\) is \(F\) and the fact that \(y\) is \(F\) are (partly) identical because both \(x\) and \(y\) are member of the class \(C_F\) of all \(Fs\).

(P2) What is the identity between the fact that \(<x,C_F>\) stands in the class membership relation and e.g. the fact that \(<y,C_F>\) stands in this relation?

(S2) The fact that \(<x,C_F>\) stands in the class membership relation and the fact that \(<y,C_F>\) stands in this relation are (partly) identical because both
<x,CF> and <y,CF> are member of the class C_{M1} of all ordered pairs where the one is member of the other.

(P3) What is the identity between the fact that <<x,CF>,C_{M1}>> stands in the class membership relation and e.g. the fact that <<y,CF>,C_{M1}>> stands in this relation?

etc.

Class Membership Regress MOO-wise*

(P1) What is the difference between the fact that x has the property F and the fact that x has the property G?

(S1) The fact that x is F is (partly) different from the fact that x is G because in the former case x is member of the F-class, in the latter x is member of the G-class.

(P2) What is the difference between the fact that <x,CF>> stands in the class membership relation and the fact that <x,CF>> stands in some other relation R?

(S2) The fact that <x,CF>> stands in the class membership relation is (partly) different from the fact that <x,CF>> stands in R because in the former case <x,CF>> is member of the class C_{M1} of all ordered pairs where the one is member of the other, in the latter <x,CF>> is member of the class of all R-pairs.

(P3) What is the difference between the fact that <<x,CF>,C_{M1}>> stands in the class membership relation and the fact that <<x,CF>,C_{M1}>> stands in some other relation R?

etc.

The question is whether these regresses are harmful for Realism about Universals and Class Nominalism respectively, and, if so, whether they can be blocked. Likewise, the question is whether the regresses generated by the other solutions to the Problem of Universals (Resemblance Regresses, etc.) can be used as an objection to them. I am sceptic. But this interesting topic has to wait for another day.

4. Recap

In this paper we asked: what is the Problem of Universals? We showed that there was an easy problem, and a more difficult one. To solve the
Problem of Universals is not only to distinguish between the notions of numerical identity and distinctness, and qualitative identity and distinctness (the easy problem), but also to provide information about what qualitative identity and distinctness consist in (the more difficult problem). We have seen that it is important to get clear on the problem, for issues of explanation and infinite regresses depend on it.

REFERENCES

