A Form of Caleulus

INTRODUGTION

The starting-point in A is a “system” S, in fact two connected inductive
definitions, in which two classes are defined. The concept of a figure (“Fi-
gur” in German) is provisionally introduced in an informal way.

In B these two classes are generated by means of calculi. The problem
of their decidability is treated. The proofs of the decidability of a calculus
are based upon numbers.

In C a form of calculus is described, which generates “figures” by means
of manipulations upon numbers. Such a calculus generates series by re-
cursion and these series determine entirely the construction of the figures.
The series memorizes the way a figure is constructed. In fact the series
determines a P-marker, but this aspect is not treated in this paper. In an
attempt to start from the base we have only tried to define the class of
those calculi which generate the finite-state languages. To demonstrate
the strongness of this form of calculus a class of mirror-expressions is ge-
nerated.

In D a calculus of the same type, but with transformations, is constructed.
Because of the abstract character of such a calculus an axiom system with
similar effects is constructed. An attempt is made to specify the class of
the theorems of the logic of propositions.

A. Tue System S

In the system S two classes, of which the elements are composed of signs
occurring in the alphabet of S, are defined.
1. Alphabet: X, ’, =.
2. Inductive definition of the class V:

i. X is an element of the class V ;

ii. if T is an element of the class V, then T’ is also an element of the
class V;

iii. only these given by i and ii are elements of the class V.
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Remark : T is a variable for elements of the class V and it only appears in
the language in which we refer to the elements of V (meta-
language).

3. Inductive definition of the class B :

i. X = X is an element of the class B ;

ii. if T = Sis an element of the class B, then T’ = S’ too is an element
of the class B;

iii. only these given by i and ii in 3 are elements of the class B. 1, 2,

and 3 form the system S.

The elements of the class V, namely X, X’, X"/, etc,. just as those of
the class B, X = X, X' = X', X" = X", etc., are “figures”.

In a way of intuitive approximation a figure can be considered as a
constructive precept. Consequently, it can be differentiated from the
particular realization printed on paper. It can be said that an appeal to
the constructive precept is necessary for a particular realization.

In 24 and 3., X and X = X are respectively defined as given figures.
With these figures begins the construction of other figures. The way this
construction ought to be done is prescribed by 2.ii and 3.ii.

A similar procedure completed with the data about alphabet and variables
is named a “calculus” by Lorenzen (%).

In consequence, a calculus is apprehended by Lorenzen, as a method
to construct figures.

B. Tue Carcurt K1 anp K2

1. The calculus K1 :
i. atoms: X, ’;
ii. variable for figures: T;
a) beginning of the calculus: X
b) rule of the calculus: T— T".

The atoms, finite in number, form the alphabet of the calculus. In this
case T is a variable for the figures of K1. Further, figure X is given. The
rule T—T' is a precept for the construction of a figure T’, in case figure T
is already given. So the rule can be applied to X as well as to any figure
already obtained out of X, by the application of this same rule. The initial

(1) P. Lorenzen, Einfiihrung in die operative Logik und Mathematik, Heidelberg,
1955, p. 12 and ff.
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figures as well as those which can be obtained out of the initial figures by
applying the rule, are said to be derivable in a calculus.
2. The calculus K2:

i. atoms: X, ’, =
ii. variables for figures composed of atoms X or “: T and S;
iii. a) A: X=X

b)R: T=S->T =8".

A and R are abbreviations standing for, respectively, the beginning and
the rule of the calculus. The variables T and S of K2 belong to another
type than the variable T of K1, in the sense that T of K1 was a variable
for figures derivable in the calculus K1 itself, whereas T and S of K2 are
no variables for figures derivable in K2.

As already mentioned in ii, they are variables for figures composed of
the atoms X or ’

In order to apply the rule of K2, we must be able to recognize a figure
composed of X or * on the right and the left side of the atom “=

The meaning now of the statement “F is a figure exclusively composed
of the atoms X or /, ’/, however, is that F is derivable in a calculus Ki of
which X and ’ are the atoms.

Consequently, calculus K2 supposes a calculus Ko.

Naturally, also variables will occur in the calculus Ko. However, these
will not belong any longer to the type of variables of K2, but to the type
of variables of K1. For, in this case, an appeal is merely made to the fi-
gures derivable in the calculus itself.

3. The calculus KO :

i. atoms: X, ’;
ii. variable for figures derivable in KO : T';

a)Al: X
A2: !

by R1: T-T'
R2 T->TX

So we can propose to modify indication ii of the calculus K2 as follows :

ii. variables for figures of KO: T and S.

If we want to apply the rule of K2, we always ought to be able to argue
out wether we are confronted with a figure derivable in KO or not. This
will be the case if KO is decidable. But the problem is not completely
solved yet.

Both expressions
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“ii. variables for figures composed of X or '” and

“ii. variables for figures of K0” must completely cover each other.

In the first expression is given that all figures exclusively composed of
X or ' are considered. So all figures composed of X or ' must be derivable
in KO.

Let us name the number of atoms, which occur in a figure, the length
of this figure. Now, with two different signs, 2" combinations of length n are
possible. (2™ can be formulated more precisely as the cardinal number of
the set of applications of a set with cardinal number n in a set with cardinal
number 2 (2).

We say now that all figures of length n are derivable, if their number for
m atoms amounts to m".

If m®» figures are derivable for each n with m atoms, we can say that
all figures composed of m atoms are derivable.

The following now applies for KO :

i. all figures of length 1 are derivable.

The number of these figures amounts indeed to 2! = 2. Two figures of
length 1, namely the initial figures X and ’, are now derivable in KO.

ii. In order that all the figures composed of X or ’ should be derivable,
we still have to prove that, in case all the figures of length n are deri-
vable, this is also the case with all the figures of length n 4+ 1.

We suppose that the assertion for figures of length n is proved.

Consequently, the number of these figures amounts to 27,

It is possible to apply the rules 1 and 2, separately, to each of these 2"
figures. In this way we acquire a number of figures of length n -+ 1.
This number amounts to 28 x 2 = 2°t1, However, this is the number
of all figures of length n + 1.

So we come to the conclusion that all the figures composed of X and ’

are derivable in KO.

From this also proceeds that KO is decidable.

Let us name W the class of figures derivable in KO. In that case, KO
is decidable if the class W and the complement of W, namely CW, are
enumerable (]). A class generated by a calculus is always enumerable.
This has been proved by Hermes (%) for rule systems, and a calculus can be
considered thus. The complement of W, however, is the zero class which
is considered as enumerable (°). Consequently, KO is decidable.

(2) K. Kuratowski, Infroduction to Set Theory and Topology, Oxford, 1961, p. 70.

(3) H. Hermes, Aufzdhlbarkeit, Entscheidbarkeil, Berechenbarkeit, Heidelberg, 1961,
p. 17.

(4) Ibid. p. 15.

(5) Ibid. p. 16.
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In illustration we will give a similar demonstration for K1.

4. K1 is decidable

We name V the class of figures derivable from K1 and CV the complement
of V. The complement of V must be determined in respect of a defined
class. As in K1, only figures composed of X and ’ are derivable, we shall
determine the complement of V in respect of the class W of K, which
includes all figures being composed of these atoms.

‘We may conclude now that the class V is enumerable, as it is generated
by a caculus K1. CV will be enumerable too, if we succeed in determining
a calculus for this class as well. If this is the case, we may conclude to the
decidability of KI.

V and CV are complementary in respect of W, on condition that W is
identical to the sum of V and CV while these two classes have no common
element. The calculus for CV will be formed thus that it meets both re-
quirements.

‘We shall now build up two different versions for calculus KO, successively.
In both versions KO will be represented in the shape of a scheme, after
the example of the combinatory structures (5).

The first version directly produces the class V and it can easely be re-
cognized as being equivalent to the original form for KO. In the second
version the classes V and CV are generated separately and form together
the class W.

a) first version of KO :

a
X ——
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d

(6) M. Gazalé, Les structures de commutation & m valeurs et les calculatrices numériques,
Louvain, 1959, p. 10.
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X and ’, as the initial figures, are the imputs of the schematic calculus.
They are directly referred to the “output” by the arrows a and d. Con-
sequently, they are immediately derivable.

The arrows b and c refer the constructions obtained by applying rules
1 and 2 to the outputs. The possible “output figures” are directed to rules
1 and 2 by the other arrows in order to be submitted to their action.

b) second version of KO:

X a
v
L AT —T'] b1,
A | .
% lr T r—7x] c
b
L—'_[T_TI] > v
| d

Also from this schematic calculus can be proved that all figures composed
with X or ' are derivable in it. For the original version of KO, this proof
was mainly based on the fact that R1 as well as R2 can be applied to any
figure. In the above schematic version, every output-arrow is put in com-
munication with the imput-arrows of R1 as well as of R2. Consequently,
this version is equivalent to the original.

Presently, this means that W is the class of figures derivable in the
second version. '

Along the arrows a and bl class V is derivated. The outputs of these
are indeed determined by the initial X and the rule R1.

The arrows ¢, b2, and d determine a class C, of which we shall try to
prove that it is identical to class CV. This is so if C and V have no common
element.

It is easy to prove that for each n, there is only 1 figure of length n deriv-
able along the arrows a and b1, thus in K1. Let us now leave section K1
of the schematic calculus out of consideration and eliminate the connections
e and f with the other section. This section is a calculus with ' as the initial
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figure, and R2 and R1 as rules. Here as well can easely be proved that
for each 1, the number of derivable figures of length n amounts to 221,

We have to point out that this number really amounts to 2%, if, and
only if the figure obtained by the application of R1 to figure F, differs
from the figure obtained by applying R2 to this same figure F. Con-
sequently, F" must be different from FX. This is the case if ’ differs from
X, what is rather evident. This evidence, however, is susceptible of an
exact formulation by making an appeal to Lorenzen’s implicit definition
of inequality (7).

Because of its evidence, this remark was not made in the proof of the
“completeness” of calculus KO. In this case, however, it needs to be stressed
on.

We shall now examine how many figures ought to be added to this 27!
for each n, if the connections e and f are taken into account.

This time we leave the connection with d out of consideration.

a) There are 2"~1—1 figures of length n, if n is equal to 1. Consequently,
this makes O figures of length 1. In fact, ¢ and b2 are no direct output-
arrows along which an initial figure is immediately derivable. And as
already stated, d, being in fact a direct output-arrow, is not considered any
longer.

b) For each n, the number of derivable figures will amount to 2%~1 —1,
if the following can be proved : if this is the case for length n, it is also
the case for length n-}1.

We suppose this is proved for length n. Consequently, the number of
these figures amounts to 22! —1. R2 and R1 can be applied to each of
these figures: 2% —2. But above this, there is always 1 figure of length n
too, but never more than 1, which is derivable in K1 and directed to R2
along the connection e or f. This leads to the total number of derivable
figures of length n-1 to 2® — 2 -} 1. However, this is 2 (®+1)-1 _1, This,
however, is the requisite number.

For each length n, the total number of figures derivable along the output-
arrows c, b2, and d amounts to 2%~ 4 2°~1 _1, This is equal to 2® — 1.

Along the output-arrows a and b1, 1 figure is derivable for each length n.

We know now that the total number of figures derivable along the five
output-arrows must amount to 2", In fact, here it is also the case if all
figures differ among themselves: 2" -1 1 = 2% C(lass V and C can not
have a common element, and so we come to the conclusion that C is equal
to CV.

5. The decidability of K2

(7) P. Lorenzen, o. c¢., p. 34.
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To prove the decidability of K2, the same method as for K1 can be em-
ployed. The schematic calculi, however, will be much more complex in
this case. From the point of view of the practical utility this method can
hardly be recommended. Therefor we shall appeal to another method
which has not the same generality as the first one.

We shall give a quick outline of the proof, which will be resumed in
section C, in which we shall try to give a general description of simple
concatenative calculi.

A derivation A in a calculus K can be described as a finite series of figures,
which are either initial figures of K or figures immediately obtained from
preceding figures, by means of a rule R, belonging to K. So a derivable
figure is the last figure of a derivation. Consequently, F is a figure derivable
in K, if, and only if a derivation for F exists in K.

The set of all derivations in K is decidable (recursive).

The number of all derivations is nevertheless infinite, so, in case there is
no derivation for a specified F, we must keep searching without ever coming
to the conclusion that it does not exist.

At least this will be the case if we have no further data to our disposal.
Suppose that the length of a derivation, namely, the number of figures
which occur in the derivation is smaller than or equal to the length of the
derivable figure. In that case only a finite number of derivations are to be
considered for a specified figure F.

After having carried out a finite number of prescribed manipulations,
namely, the construction of all derivations of which the length does not
exceed the length of figure F, we can argue out wether F is derivable or not.

K2 now is a calculus, as we can see by the rule occurring in it, of which
the length of the derivation meets the appointed condition.

Consequently, K2 is decidable.

C. GENERAL DESCRIPTION FOR CALCULI

In each calculus a class H of atoms is considered as datum. This class
is named the alphabet of the calculus.

Before sarting with the actual description, we shall try to describe the
“construction precept” concept for these atoms more precisely.

The atoms can be considered as vectors (for instance, with 1 and 0 as
basis numbers) determined by a matrix. When a graphical representation
(for instance, it can also be acoustic) is presented to be identified, it can be
transposed into a vector by means of the matrix. In case two graphical
representations lead to the construction of one and the same vector, they
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are considered as identical. On the other hand, if a vector is given, it can
be interpreted through the matrix in a series of indications for a graphic
realization. In that case, the vector, interpreted by means of the matrix,
is a “comstruction precept”. Consequently, H is the class of vectors for
which a special matrix is given (]). So H is a subclass of the class of vectors
determinable by the matrix :

H' = {v; | v, is determinable by M } for1 <i <,

HcH,

H= (Vo V) form <.

To facilitate some constructions, an appeal is made to the zero vector
vy, as well. Whereas v, = (0, 0,..., 0), not a single realization is determined
along v, and v, can be considered as the identity element for the concate-
nation: vyv, = v,

1. Construction of figures in H

The figures in H are all the possible finite concatenative combinations
built up of elements of H.

A calculus determines the construction of a class of series R, and each
series R, determines the construction of a figure I (?).

First we shall give the condition to which a R, must fulfil and the way a
figure is constructed :

i if H = (Vg Ve Vi) then h = (0, 1,..., m) ;
il. R, is a series of n elements c;:
R, = (¢ Cqseeey €y_¢) formn > 0
iii. each element c, is a pair of natural numbers a; and b ;:
c;=1(;by
— ifb;=0,thena,=0andi=0,
— if b, 0, then 0 < a; <il or a; is an element of h (this is
marked by a,; an exception is made for 0, where it is superfluous)

then
1<b;<ilorb;= i; (thus b ; is an element of h)
iv.if ¢, = (a, b,) then F; F. F,
i i
#Fi—FéF(;:FOFo: 0 =Yy
— F F;=F;
-—-—F‘;=F=Vj
i

(8) R. J. Spinrad, Machine recognition of hand printing, Information and Control,
1965, p. 129 and ff.

(9) For a similar determination by a R, : N. Bourbaki, Théorie des Ensembles 4, Paris,
1957, p. 9.
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[ 2

The sign “~” represents the operation of concatenation which will be
reproduced by writing the v ; immediately next to each other in order to
facilitate the expressions.

Examples :

a) R, = (0, 0), (0, i)s (1, 2,)’ (2 2))
¢, = (0,0) and then F) = v,

¢y =(0, 1) Fy =F’0\F_1=F'i =F =v
2 =(L2) F2 =F1/ F3=F; Fy=vv,
C3=(2,2) Fé:FéFé=F1F2F2=V1v2V2

R, determines the construction of the figure v, v, v,.
b) H= (vy v4, V) and v; = X and v, ="'
4 = ((0, 0), 0, 1), (2, 2), (1, 2))

~ (0, 0) F, =v,
cl=(0,1) F1'=F¢Ff=F~{=F1=v1=X

2 =22 -—F Fg—F F2—v2v2

es = (1,2) F3__F TF, = F, Fy Fy = vyvyvy = X

One and the same figure, in this case v,v,v,, can be determined by two
different R . Partial, this is due to the fact that the associativity of the
concatenation has been taken into account:

(ViVo)Vy = ¥y (VaVa)-

Apparently, c is a superfluous element. But for some series it is saving
us a normalization process, on which we shall not digress any further, and
it facilitates the setting up of a certain class of calculi. Comsequently, the
calculus for figures in H will look as follows :

i. H = (Vg Vysees V) and h = (0, 1,..., m)
ii. ¢y =(0,0)
cn1+1 = (04 1)

cnm +1 = (nm9 ﬁl)
forn, ny, v, 0y, =0
The indices 1, 2, ..., m play no part in the determination of the succession
of the process at the setting up of a series R, and were only introduced to
explain the structure of the calculus. Asn; > 0, eachn j +lcanactasan,.
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The determining of a series R, for instance R, = ((0, 0), (0, 2), (1, 3),
2, 7), (3, 1)), takes place as under :

iii. ¢ = (0, 0)
¢ +1 = (822

cn3+1 = (n3’ ‘5’)
cn7+1 = (117, 7)
cn1+1 = (ny, 1)

Forn, =0,n; =n,41 =1,n; = ng+1 =2,n, =n,+1 = 3, in the
course of which it was supposed that m > 7, follows that :

¢, = (0, 0)
¢, = (0, 2)
cy = (1, 3)
cg = (2 7)
e, =G1)

Further it is easely seen that R, determines the construction of the
figure vovov,v,:

R, indicates the length of the derivation for the derivable figure FI;_I
and the length of this figure at the same time. Both are equal to n-1 if
we leave ¢ out of consideration.

2. Construction of the figures of Lorenzen’s calculus Ki, with more than
one atom as initial figure.

The class I is ordered to facilitate the reference to atoms. This ordering,
however, is not essential. Consequently, H and h will be considered as
classes in order to determine the class h’, a subclass of h. h’ is the class
of indices of the elements of H, which are considered as initial figures in
the sense of Lorenzen. Such calculi are formed as under :

i. H=(vyVqse, V) and h = (0, 1,..., m)

h < h

i’ is an element of h’

Now, if v, and v,, for instance, are considered as initial figures and
T— Tv, as the only rule of Lorenzen’s calculus, then we acquire the fol-
lowing :

ii. ¢, = (0, 0)
¢ = (0, )
Cop1 = (0, 2) forn > 1
For i’ = 1, R, determines the figure v v,v,:



86 A. PHALET

iii. ¢, = (0, 0)
¢, = (0 1) F, = F,F; =F;=F, = v,
¢, = (1, 9) F, = FZF—é = F::\F,z_\= V.V,
¢y = (2, 2) Fy; =F,Ff =F, F, F, = v,;v,v,

3. The generation of the class B (calculus of Lorenzen K2)

i H=(@vevyvy andv, =X, v, ="', vy ==
h=(01,2) and h’' = (1)
il. ¢, =1(0,0)
Cy = (0, i)
Chpq = (1, 2) forn >1
Cirq1 = (> 3) forj =1
Cipa = (41, )
cj+3 =0

Before passing on to the general description of a simple concatenative
calculus, the construction method ought to be completed with the opera-
tion of the converse.

4. The operation of the converse
i ifi=7] then F;=F
ii. Fg=F; and F{ =F,
iii.if F;=F, F, then ¥, =F, F, =F, F,_
1 i i ii

Mirror figures can be formed by adding this operation to the construction
method : v v, VoV, V V,oV,aVy, VoV vV, ete.

The calculus, which determines the construction of the class of mirror
figures composed of elements of a certain class H, looks as follows :

L H = (v Visemr V)
h=(@,1,.,m) and h = h’
il. ¢, =(0,0)
¢, = (0, T')
ey 41 = (g, i) forn, =1
1

cnz_,_1 = (n,, i) for n, =1

¢, 41 = (0, m) forn, >1
m
cp+1=(p, D) forp=>1
Cot2 =0
ForH = (v,,v,,V,) We are now giving the construction of v,v,v,v,v,v, :
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jii. ¢y = (0, 0)

Only the figures for which Cpp1 Was determined, are considered.
Consequently, we only obtain a figure in case the process stops by ¢, 5 =
0. So there are calculi in which ought to be stated that ¢; can end a R .

¢c; =01 F =FFi=F=F =v,

c,=(,1) Fy=F, F{ =F; Fy = v,V

’

¢c; =22 F,=F,F;=F F F;=F F F,=v,v,v,

L= 3 F;_F'F’_F F, F, Ff'\Fé—

_FFIFFFZ—FFFFF

—F,F, F,F,F, Ft=

A

= FTFTF;F,;FTF1 = V{V1VaVaV1Vy
c;, =0

5. Description of a simple concatenative calculus.

A simple concatenative calculus is a collection of entities : H, h, h', R,
through which a class F is generated if it meets the following requirements :

i

iii.

iv.

vi.

H is a series of elements v, which are determined by a matrix of

the type already described :
if H = (VVqsees V) for m > 0, then
h=(,1,..,m)andh’ < h;
R =R, = (CL..., C}) so that for t> 1
—Cl = (Cps +rr C) for s> 0,
—Cl=(cpyqps g fors >Tand 1 <j <t
co = (0, 0)
c1 = (0,1) and 1’ is an element of h’
=(apby for 1<i <n+s and for
D {hu(O . i) v (0,..., i-1)
aj, b are elements of D
or ¢, ——Ofori_sandt-—l ori—n—l—sandt>1

ife;=(yby, thenF _F Fb
i

\) -

—FF—FF F

—F"J-=F =V, for] element ofhandj=0

ife; y=(;ub )and1-1 = k, then
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vil. the class F is the class of F, with F; = 15’? - F;
1 n
and j ; is each time an element of h, so thati =sfort =1 ori =

n+s (c,,  of CJ) with explicit mention, for 1< j< t.

Now it can easely be demonstrated that the length of a derivation, namely
the index of R, less one, or n-1, is always smaller than or equal to the
length of the derivable figure. Consequently, each simple concatenative
calculus is decidable.

6. The generation of “regular languages™.

The class of regular languages is the class of languages which can be
“generated” by means of “representing expressions».

An exact formulation can be found in N. Chomsky and G. Miller 1958 and
1963 ().

For the construction of representing expressions out of given representing
expressions, in the last resort from some atoms, an appeal can be made
to two operations, namely, the product operation and the “star” operation.
Let us consider v, and v, as the given representing expressions ; in this
case, the representing expressions v,v, and (v,,v,)" were formed from
v, and v,, respectively, by the product operation and the “star” operation.
v,v, represents only itself, while (v,v,)* represents the class of figures,
generated by a diagram, which generates all combinations consisting of
v, and v,

So the representing expression v, (v,,V3(v,,V5)tv)tv,) represents (or
“generates”) the class of figures, which are generated by the undermen-
tioned “diagram”. This class can be considered as a regular language L and
the “diagram” as a graph of a “finite automaton”.

ViV ViVaVoVg, ViV,oVaV,VeVgVeV,yVe, etc.., for instance, belong to
the generated figures. In order to obtain these figures, we must start from
S, (left) and following the arrows in the indicated direction, we end in S,
(right) ; each arrow which is passed along, produces a v .

‘We will make an attempt to define the class of calculi, which generate the
regular languages, as the class, whose elements are constructed by means

of the operations p and s and the elements ¢, .
0

If His a class of atoms v;, then c10 = (apb,) = (a, j). For every

¢; a; =iL Thus ¢; = (i-I, j). So cIO = (0, j). The elements c10 will

(10) Formal properties of grammars, Handbook of Mathematical Psychology, edited
by D. Luce, R. Bush, E. Galanter, , New York, 1963, p. 336.
Finite state languages, Information and Control, 1958.
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be called “calculus expressions”. In fact they are the smallest possible

“calculus expressions”.
The class of “calculus expressions” is inductively defined as follows :

i. ¢, is calculus expression,

0
il. if X,., X, for n> 1, are calculus expressions, then so are
PX e X)) and s(Xy,.e., X))

The operation p corresponds to the product operation. In fact its ap-
plication to a sequence of calculus expressions results in a series with a
last supplementary ¢ ; equal to zero.

Example :

P(Cy +C4 5€1 ) =C€4 €1 11 5C1 41 41561 414141 (=0) =
0 0 0 1 001 o0 0 1 0 o0 1

€y 5C9,C3,Cy (=O).
1 1 1 1

We call the “0” in ¢; the “product degree”. An application of p gives

0

the next higher product degree, 1 in ¢, , ¢, ,..., to the first argument of p.
1 1

Then p proceeds through addition of indices.

The operation s corresponds to the star operation, which corresponds to
one or more cycles, beginning and ending in the same state S ;, of a diagram,
as it has one or more arguments. A cycle corresponds to an operation of
iteration, whereby the result may be zero, as the cycles may be omitted in
the travelling from S, to S,. If there is more than one cycle of the same
state, their order is unspecified. Now each element c, 1= @ j) can
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perform an iteration or can be omitted and several such elements must not
be ordered.

Example :

s 5€1 501 ) =C1y0° sy sCppy’ .

0o 0 0 (1) (1) (1)

As all the elements of the sequence above have the same “product degree”
0 and the same “sum degree” (1), their order is not specified.

Example :

To the representing expression

a) Vi (VooV3(vyvs)tve) vy

corresponds the calculus expression
b) 1. p(c, ,s(c; , p(cy »8(cy 51 )5 €y ))s €y
0 0 0 0 0 0 0

where the b, are determined from the beginning as follows :

2. p((@ ;5 1), 5((a 152) 30eene)-
In order to avoid the complexity of a full and abstract definition, we

shall explain the working of p and s by means of illustrations.
First a few remarks :

i (4n)+H =i+4n
j-+(+n) = j+i+n
ii. 0 is not an element of an argument for p,

and not for s, but if¢; = ¢;, P = 0, thenc; ; = ci+n((P)) where
5 S
(p) and (s) are equal to the least degrees of the respective type (pro-

duct and sum degree), while the a ; remains of the degrees p and s.
iii. (i+n)-I = nHi-I

Indeed, after the end of the computation the commutation of i+n

into n--i is made in order to determine the a ;.

iv. p((Cl s Cy )9 (01 s Co )) =€y ,C5 ,C3,Cy ,C5 (= 0).
1 1 1 1 1 1 1 1 1

+n

But: p(cl+n0’ c1+n0 = Cl+n(0+1)’ Cl+n(0+1)+(0+1)’

1 2 3
Cl+n(0+1)+ (0+1)+1 (= 0) = Cy4n s C14n"s Ci4n (= 0)-
Remark that the iterations are ordered by the degrees.

As a final illustration the calculus expression of our example will be
computed.

p(cy 5 8(cy > p(ey »8(cy 5 €5 )€1 ))Cq )
0 0 0 o o 0 0
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We begin with the innermost calculus expression.

a) s(c; , ¢4 ) = c1+n°, Cipn’
o o

0 0 — 1 1 1 1
b) P(ey » (C140% €140 €1 ) = €15 (C11n"s C1yn')s Catn’s Ca4n
. 0 0 1

1 1 2 2(—
€y cl+n ’ c1+n ’ c1+n ’ c2+n ('— 0)

1) 1) 1)
As a remark note the reordening of the series in a p expression after an s
expression.

0 1 2
c) 8(Cy » (o)) =C140% Cipn's Con' 5 Cipn’ o Cipn )
0 1 1+n 1+n (14n)
d) p(Cy » (ee)s 6 ) =C4 5 C1ynls C1in> Copn® 5 Cpyn-
P(Cy 5 (oeee)s €y 1 9C14n 2 C14n"? C14n” 2 C14n >
0 0 1 1 1+n 14+n
3 3 3
cl+n( ) 4 c1+11 4 c2+n (= 0)'
(1+n)
A calculus is now formed by means of the addition of ¢, to the calculus
expressions.
So we obtain the following calculus :
¢, = (0,0)
c; = (0,1)

cn+1 = (II,Q)_
Cyp1 = (s 3)
. 1 _
cj+1 = (]n’4)
nt1 _
= (j0)
+1 .
Cy41 = (jn’G)
(n+1)_
cp-|-1 = (p’ 7)
Cpr2 =

Cir1
n

To simplify the expressions nl,... have been replaced by j.... The figure

V. VoV3V,VsVeVev,ovy for instance, is determined by the series Ry, which
runs as follows : :
(0,0, (0,1), (1,2), (2.3), 31,3), 45,5) (53,5), (6,,6),(7.2), (8,7)). The genera-
tion of the figures is easy. The complexity of the computation of calculi is
due to the fact that all the processes are analysed into operations on natu-
ral numbers.
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D. A Carcurus K4 witH TRANSFORMATIONS AND THE LOGIC
oF ProposiTIiONS

In order to facilitate the understanding of the working of K-, first an
axiomatic system S+ will be set up. S-- is meant as an introduction to
K+ and not as an equivalent system. However its classical form makes
it easier to valuate the import of K+ and to discuss and illustrate certain
expressions.

I. The system S--:

1. alphabet: X, ', =,,, ;,(,).
1 2 3 4 5 6 7
2. the class U:
i Veo,

ii. if M and N are elements of the class U, then (M, N) and (M ; N)
are elements of the class U,
iii. the only elements of U are those defined in i. and ii.
remark :
a) the class V in i. is already defined in the system S ;
b) M and N in ii. are called the components of (M, N)
and of (M; N); M is his own component.
3. the class T:
a) i M=M,
ii. if M =N, then N =M,
iii. f M = N and N = P, then M = P,
b) i M,M)=M
i, O, N) = (N, M)
iii. M,(N,P) =(M,N),P)
iv.(M; (N, P)) = (M;N), (M; P)
v. (M,N);P) = (M;P),(N;P))
vi. (M, N); P) = M; (N; P))
vii. (M; N), M) = N
c) i. M, N, P are elements of the class U;
ii. if M is a component of P, M = N and P’ is the result of
the replacement of M by N in P, then P = P’
d) only those determined by a, b and ¢ are elements of T.

From b) vii. it is clear that the expression “(M ; N)” can have the intuitive
sense of “the function whose value is N when the argument is M”. If this
function is meant to be the implication, then the sign of identity is to strong
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and must be replaced by a reduction from left to right: “reduces to N”
or “ = N”.

Consequently the sign “, ” can be interpreted as conjunction. But, as is
clear from b) v. it can be a disjunction too. The difference between disjunc-
tion and conjunction will be made clear by means of the concept of context.

The remarks above are only anticipations. Now we will go over to the
construction of the calculus K.

II. The calculus K+-:

L H=( VgVqimVs)

The numbers 1 to 5 correspond to elements of the alphabet of S, as
they are numbered there. The brackets are omitted. The way of con-
struction is always given by the series R .

h = (0, 1...., 5)
h' = (1)

ii. ¢g =1(0,0)
cl=(0’i)
Cop1 = (@, 2) n>1
Copy = (V, %) vzl
Cypp=(+l, m) v4+2>n,m=>1
Cop1 = (W, D) w =1
cw+2=(w—|—1,r) w+2>n,r =1
Cit+1 =(,3)
Cijpa = (+1,7)
Ciy3 = 0.

The indications v4+2>n and w-2>n express the fact that v and w are
of an higher degree than n. We have choosen this way of indication to
simplify the expressions. The result is that we can’t go back to ¢ ; after
the determination of a ¢, , or a ¢, .

We will say of a series R, that it belongs to the class of the R, , if it
ends with a pair of natural numbers ¢, ;. So the class of figures determined
in their construction by a series R}, ; corresponds to the class V of the
system S.

Further we distinguish the classes of the RZ_ ,, of the R3, , and of the
R‘; 2> Which represent the series ending respectively with a ¢ , o, a €y,
and a €, o

The class of figures determined by series R}, ;, RZ, , and R3,, cor-
responds to the class U of the system S—+. R% o determines a class which
is a subclass of T of S+.
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the remark must be made that the numbers m and r in ¢,
under ii. above are given only if there is, respectively, a R} and

a Rl such that I <1i < 3.
After these remarks we go over to the description of the transformations.
III. The transformations of K+.
1. preliminary definitions :

2)

b)

LifR,isa Rn+1, a R L p0Ta Rw+2, then R ; is determined in R ,,

ii. if both R;and R are a R}, 4, 2 R}, or a R3,,and R,
R;R;is then an initial subseries of R ), then R is deter—
mmed in Ry,

iii. if R2,_, (or R“ +o) is determined in R, then R} (or R}) is
) determined in R ; (for the m (or 1) element of ¢, 5 (0rcg, o)

R, is a transform of R, if and only if R is the result of the

application of one or more operations t1, called transformations,

upon series determined in R;: T(R,) = R

¢) to express and execute the transformations, which are a form

2. the transformations of atom 4, “,

of calculation we need the following definitions :
i. x+a + Ry+b = 1:{x+a+b
il [Ryyo =Ry
fii. | RYyo /= R
iv. R} —|—R‘ R} +R3+2——R§+2 for R} = R, and Rnil=R;
v. if R;— R} + R, then
Ry = R} —[—R‘ Ry + Ry

bH
.

These transformations are the idempotency, the commutativity and
the associativity of atom 4 presented in this order.
As it is in general necessary to differentiate the Rnia, we will number them,
e.g., R} and write R2_, for the R2 , whose R} is R} . This is the case
1

1
when ¢, ,

1

= (v+1, m,).

i. tl(Rv+,,) = R}, for R} = R! (from M, M) to M)

1Ry

——Ri—l—R‘_Rg from M to (M, M))
X X4 2

-1i corresponds to 3.b)i. of S+.
ii. t3R2,,) = R2y,, for Ry = R} and Ry, = R}};

—ii. co

rresponds to 3.b)ii. of SH-.

il PR, 5) = R +RE, +Rio) = Ripa -

for R}

—iii, corre

= Rnll + Rv+ 22 5
3 1
sponds to 3.b) iii, but only from (M, N), P to M, (N, P). The

other direction is accessible by means of ii.
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Example :

(Z . X) is a transform of (X, (Z , X));

a) the descrition of (X, (Z, X)) in terms of series is R} 4 R2, , =
1

RZ

X2 such that Rn‘11 =R} +RZ,, and R} =R]
2

2

(x is a number such that R} determines the string of atoms X)
b) tz(R +9) 3+9 —Rl—l—Rl _Rni}l‘l’Rl (R1+Rv+2)
’|‘RI (Rz+2)+R =Rz+2 +2 °
%

2 2

To control the obtamed figure, we can take the absolute values of
the known subseries of the resulting series :

2 _ i
Rz+22+22 - (Rz v+‘) ) +Rx+2
2

The absolute value of this series is :
RI+Rl)+R! as [Rl/=R /Rv+2 |=Ri
As R} =2R;, we 2obtain ®RI4+R)+R 1_

K t3(§§+22+22) = PR+ Ry +2, + R ) = §+23

for R =R} —1—R‘_|_2 __R]—I—RV+,, R§+9.
3
This means that we have obtamed the figure (Z &, X))

d) tl(RX+2 ) =Rl as Rm =R}! =R/
e) R, +t1(R ) =R, -l-R1 =R,
3
and so T(RZ, , ) = R; + 5 . This means that we have finally obtained
3

the figure (Z, X).

2»

3. the transformations of atom 5, “;
i t*R3., +R2 ) =RIfor R‘—Rnil.
-i corresponds to 3 b) vii of S in one direction :
from (M ; N) , M) to N.
ii. the other transformations are defined as a set of transformations
tl, for j > 4 such that
TSR ) = T'(S(R ;)) where
a) T and T’ represent the application of transformations t1,
for 1 <i<4,
b) s(R;) = R; + R} and s(R) = R} + R}
such that R} = R and that R belongs to the R3_ , such
that one of the following conditions is satisfied :
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bi. R3,, = R; oer+2<_:_R'.
bii. Rw+2—R‘ and Rv+‘) < R;orR2, < R;

Example :
There is a transformation from (M , N); P) to (M; (N ; P)):
a) s(M,N); P) = (M, N); P), M, N)
tH(M, N); P), M, N)) =P
b) sM ; (N; P)) = M; (N; P), M, N); after an application of t® the
transformation t* can be applied twice and we obtain P.

But there is a restriction on T’ :
i. t* can only be applied if the R} is given by means of the operation s;
ii. after every R2 4o has been eliminated no further transformation can be
applied.
These restrictions do not hold for T.
So there is e.g. a transformation from M to (M ; M), but not from (M M)
to M.

B.
An attempt to state the theorems of the logic of propositions.

1. Context and functors.
In the expression (M ; N) we call M the context of the kernel N. So the

expression with context has the form R3 ...
If R 1“1s the context of a kernel R i and for the kernel itself holds that

R‘ R '+2 , then R -I—R1 ,whlchls equal to R3 _I_zsotha’cR1 R‘
and R‘ ;= R ‘, is the context of R1 , such that the whole expression
becomes R2 ‘2 and R} = R2,,. Now there exists a transformation from
M; (N; P) to (M, N); P). This means that TRE,,) = R;‘V 2

The whole context is determined if R} differs from R3, ..

R3, ,is a functor if there exists a transformation from the context toR .
The transform of a functor is itself a functor.

Example :

In the expression (M; N); ((N; P); (M; P))) the context is M; N),
(N; P), M. If the transformation t* is applied twice to this context we
obtain P. So the expression is a functor.

2. The theorems without negation.

Atom 5, namely ” ;”, represents the implication. So the usual form M — N
is rendered by M; N. Atom 4, namely ”,”, represents the conjunction
and the disjunction. These will be differentiated in respect of the context.
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So the context determines the operational value of atom 4. The axioms
of the positive logic of propositions are those stated by Hilbert and Bernays
in “Grundlagen der Mathematik I” 1934, page 66.

a) the axioms of implication :

i. (M;N);(N;P); M;P))

This functor was already stated in the example above.

fi. (M; M;P); M; P).

This axiom can be generated as follows :

The expression (M ; P) = (M; P)) is a “theorem” of the calculus K+
Indeed it is a R‘jL o For such a “theorem” there exists always a functor,
which is, practically speaking, obtained through the replacement of the
“=" by the sign “;”.

Now it is easy to control that (M ; P); (M ; P)) is a functor. The trans-
formation of a functor is itself a functor. So, by t1, (M, M); P); (M ; P))
is a functor. From this we obtain by the transformation 3 b) vi in S the
functor

(M; (M; P)); (M;P)), which was stated as the second axiom for the
implication.

The generation of the third axiom proceeds from the “theorem”
(M, P)y= (M, P)). There are two possible forms:

a) (0L, P); (M, P))
M; ®P; M, P)) 3Db) viin S+
So we propose as the first form :
ii.a(M; P; M, P))
b) (M, P); M, P))
M, P); M), (M, P); P) 3b) iv in S+
M; ®P; M), (M, P);P) 3 b) viin S+.

The second form is then :
iii.b (M; (P; M), (M, P); P)

Now we consider the partial functor (M ; (P ; M)).

It is, following Hilbert and Bernays, the third axiom of implication.
Here too it can be accepted as an axiom if and only if the second partial
function of iiib. will also be accepted as an axiom, while the central sign
of iii. b, namely “,”, must be a conjunction.

Indeed, all the axioms of an axiomsystem can be considered as connected
by the coniunction.

iii. (M ; (P ; M)
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The second partial function will be listed as an axiom of the coniunction.
B) the axioms of the coniunction :

For the introduction of the coniunction we can choose between the
already stated form iii.a and the form generated in the following way :

P;M,N)) =(@P;M,N))

(P; (M, N)); (P; M, N))

(P; M), @P;N); P; M, N)) 3 b) iv in S+
(P;M); (P;N); (P; (M, N))) 3b) viin S+
iv. (P;M); (P;N); (P; (M, N))

The elimination of the coniunction is stated in two partial functors:

(M,N) =M, N)
(M, N); (M, N))
(M, N); M), (M, N); N)) 3b) iv in S+

v. (M, N); M)

vi (M, N); N)

Axiom vi is the second partial functor of iii.b. In the case of axioms v
and vi too the condition must be satisfied that the central sign in the real

functor is a coniunction.
This problem will be examined after the statement of the axioms of the

disjunction.
C) the axioms of the disjunction.

(M’N)=(M’N)
M,N); (M, N)
(M M, N)), (N; (M, N)) 3b) v in S+

vii (M; (M, N))

viii. (N; (M, N))
Axioms vii and viii introduce the disjunction.
Elimination of the disjunction :

(M,N); P) = (M, N); P)

(M, N); P); (M, N); P))

(M; P), (N5 P)); (M, N); P)) 3b) v in S+
(M; P); (N5 P); (M, N); P))) 3b) vi in S+

3. The differentiation of conjunction and disjunction.

As already stated, two axioms can introduce the coniunction :

fii. a (M3 (N; (M, N))
iv. (P;M); (P;N); (P; M, N))).
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The context of the first is (M , N) and of the second (P ; M), (P; N) , P).
By t* this last context reduces to (M , N). So the context of the coniunction
(M, N) is (M, N). From the two axioms, which introduce the disjunction
it is clear that M alone or N alone is the context of the disjunction (M , N).
On this basis a full examination is possible.

At the start atom 4 is a coniunction. E.g. in the expression (M, N);
(M, N)) the context is (M,N) and so the second (M, N) can be interpret
as a coniunction. Now the expression itself is secured by the “theorem”
M,N) =M, N).

4. Natural deduction.

If there is a transformation from M to N, then we can state (M; N).
This corresponds to the schema of the introduction of the implication.
The transformation t* gives the schema of the elimination of the implica-
tion : from (M ; N), M to N.

The schema itself has the form :

M;N),M

N

The context is written, as a premiss, above the line, the kernel, as the
conclusion, under the line.

There is no difficulty about the other schemata. The only remark is
that the coniunction is introduced as follows :

M,N

M, N)
This is the original form (M, N); (M, N) (&).

5. A syntactical decision method for theorems of the logic of propositions.

Five transformations, namely t!, t1~ to t%, are initially given. The set
of all the other transformations is defined by means of these five trans-
formations. The operation s and the two restrictions must be justified by
a theory of the context.

It remains to be proved that all transformations are theorems of the logic
of propositions and that all theorems are transformations. Therefore a
theory of the context is necessary. )

We will give one more ilustration of the method.

(((M ; M) ; P); P) is a theorem of the logic of propositions and a transfor-
mation. So the context (M ; M); P) and the kernel P must be reducible

(11) D. Prawitz, Natural Deduction, Stockholm, 1965, p. 20 (schemata).
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to identical configurations. This reduction was expressed by the formula
T(SR,) = T'(S(R ) and two restrictions.

a) (M; M); P), (M; M), M
b) P,M;M),M

In a and b the operation s has been applied to the context and the kernel.
After the application of t*both a and b are reduced to the same configura-
tion (P, M).

In the case of a partial transformation the results of the reductions are
subclasses of each other. The whole transformation can be reconstructed.

In this respect the negation produces a greater difficulty.

6. The logic with negation.

In the calculus K- the negation sign was not introduced. But we can
suppose that every expression has a symmetrical element, which is his
negation.

Along with the coniunction, the minimal (2) negation can be introduced
by axiom iv.

x. (P; M); ((P; -M); -P))

Here -P is (P ; (M, -M)).

The context of x reduces to (M ,—-M) and the kernel to (P, —P).

So we must accept that (M, -M) = (P, -P) or the possibility of the
two transformations (M, -M); (P, —P) and (P, -P); (M, -M).

Now, there is a transformation from (M, —M) into (M ; M) and from (P, -P)
into (P ; P). In both cases atom 4 is a coniunction. In fact (M , -M) reduces
to (M, -M) and (M ; M) to M. But from (M, -M) to M there is a partial
transformation, whose whole form can easely be reconstructed. Further
there is a transformation of (P; P) into (M; M) and from (M; M) into
(P ; P). Both reduce to (M, P). So we can accept the two original trans-
formations.

The strict negation is in fact an elimination of the negation. This negation
is eliminated along with the elimination of the disjunction.

xi. (M; P); (-M; P); P)

The context of xi reduces to P and the kernel, namely P, reduces to
M, -M), P. Atom 4 in (M, —-M) is a disjunction. But (M, -M) reduces
to (M; M). Even the equality of both must be accepted. Now, both P
and ((M ; M), P) reduce to (M , P).

The intuitionistic negation amounts to

xii. (-M; (M ; P))

‘We must accept a transformation from the context (-M , M) into P.

(12) H. B. Curry, Foundations of Mathematical Logic, New York, 1963, p. 257 and £f.





