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ABSTRACT 

From the point of view of the KaLC-paradigm (Knowledge as Limiting Convergence) this 
paper has two aims. First of all it attempts to sketch some of the pertiqent problems of 
scientific discovery and secondly, it outlines how these problems can be treated in the KaLC 
-paradigm. 

1. Introduction 

Once Reichenbach had introduced the distinction between the context of 
justification and the context of discovery, the agenda for the part of the 
philosophy of science concerned with methodology was fixed. Since the 
discovery of hypotheses from evidence sequences was conceived as an 
exercise aided by divine insights, intuition and other impenetrable -his­
torical, sociological and psychological phenomena, methodology should 
be concerned with the justification or assessment of hypotheses relative 
to finite evidence sequences. The assessment of hypotheses could be done 
logically, reliably and "rational" methodological principles could be 
stated for this discipline. Hempel emphasized the discrepancy by later 
speaking of a logic of justification while retaining only a context of 
discovery. Then later others quoted others quoting Popper, quoting 
Hempel, quoting Reichenbach to disprove the possibility of a logic of 
discovery. 

Even to this day, the dichotomy is still to some extent prevalent but 
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weakened first by the early contributions of Pierce, Hanson et al. arguing 
for at least guidelines for discovery based on abductive reasoning. Then 
Gutting, Thagard, Lipton and philosophers of science akin have elabora­
ted on these early fairly intuitively guided proposals. Today, abductive 
reasoning and inference to the best explanation! are parts of a prosperous 
industry for philosophers, computer scientists, logicians and cognitive 
psychologists. Much effort has gone into explicating the advocated meth­
odological principles or beforementioned rationality postulates for these 
types of discovery processes and many valuable insights have been gained 
from this effort. 

But there is also a different and more direct approach to discovery 
one may explore, one which has been greatly neglected by the methodolo­
gical community. Inspired by computability theory, and under the some­
what unfortunate rubric of formal learning theory, methodologists like 
Gold [Gold 67] and later Osherson, Stob and Weinstein [Osherson 86] 
have presented significant results. Contrary to the dictum of Reichenbach, 
Hempel, Popper, etc. discovery may be studied reliably when applied to 
questions of language acquisition in which a child is asked to reliably 
converge to a grammar for its natural language. In brief, languages are 
modelled as recursive enumerable sets (or r. e. sets) and the child is 
conceived as a function required to converge to a correct r. e. index for 
a given set over all possible enumerations of the set. The approach is 
more direct (at least if abduction and inference to the best explanation 
cover the same ground) in the sense that a discovery method is simply 
understood to be function (rather than an enumeration and selection 
algorithm for picking the "best" explanation or hypotheses for some 
adequate understanding of best) taking finite evidence sequences as inputs 
and merely outputting hypotheses much in the original spirit leading 
Reichenbach to abandon the discovery endeavor. 

Curiously enough, the first real learning theoretical result of interest 
to philosophy of science and methodology was Reichenbach's student, 
Putnam's, attempt to show that for any extrapolation algorithm based on 
Carnap's justificational standards for a probabilistic theory of confir­
mation, there exists a hypothesis that the Carnapian extrapolation algo-

1 We consider abduction and inference to the best explanation to be two distinct issues 
even though many enjoy treating them as one and the same thing. [Hendricks & Faye 981 
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rithm cannot learn even given every possible instance of the hypothesis 
[Putnam 63]. Putnam's argument did not exactly work, but the idea of 
criticizing categorical intuitive axioms of justified belief by showing that 
they interfere with the reliable performance of the inquiry method is 
important. It emphasizes that one should conduct "rational" scientific 
inquiry cautiously. Usually one initially fixes a set of intuitively justified 
canons, which the method should satisfy without ever worrying about 
whether these canons present impediments to finding the correct answer 
or not.· Even a methodologist firmly committed to the proposal that his 
methodological principles are normative and yet indifferent to correctness 
may falter if it can be shown that the intuitively justified canons actually 
stand in the way of finding the correct answer when it could have been 
reliably found by a method violating them. When the methodological 
principles stand in the way of finding correctness, the principles are said 
to be restrictive. 

But this great attempt of effective epistemology by Putnam was 
largely overlooked by philosophers and methodologists, perhaps because 
the philosophical community found it hard to see how this approach could 
be extended to the more classical problems of theory assessment and 
theory identification. However Kelly [Kelly 94], [Kelly 96], [Kelly et al. 
96] has now provided a framework and produced results resting on 
formal learning theory but tuned to philosophy of science treating real 
issues of concern for this philosophical discipline. 

The notion of successful convergence for discovery methods is of 
paramount importance in formal learning theory. What it includes is that 
there is a time such that for each later time the method outputs a consis­
tent conjecture entailing some particular correct hypothesis and stays with 
it forever after no matter what evidence it subsequently receives. Assume 
that scientific inquiry methods of discovery and assessment are two types 
of knowledge acquisition methods. Then the fundamental assumption 
underlying our KaLe-paradigm may be summarized in the following 
definition where E denotes an arbitrary method of either assessment or 
discovery and h a hypothesis: 
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Definition 1 Limiting Convergence of Knowledge 
Knowledge at a certain time = a's convergence to a correct hypo­
thesis h where 
(1) there is a time, such that for each later time 

(l.a) a conjectures h after some finite evidence sequence has 
been read, and 
( 1. b) a continues to conjecture h oyer all the possible future 
world courses in which h is correct. 

From the definition it conversely follows that if a has not converged to 
h, then a does not know h. Observe that a is free to vacillate any num­
ber of times prior to the modulus of convergence which cannot be spe­
cified in advance - this is limiting convergence. 

Our KaLe -paradigm includes a formal framework allowing one to 
investigate a multiplicity of issues among them some pertinent to theory 
discovery and identification: 

• Definition and application of reliable discovery methods. 
• The role of background knowledge when engaged in discovery prob­

lems. 2 

• The methodological principles placed on discovery methods. 
• The restrictive or permissive character of these methodological prin­

ciples (i.e. are the methodological principles correctness-conducive 
principles or not). 

• Definitions of knowledge based on discovery methods. 
• The strength of knowledge based on discovery. 
• The relation between scientific discovery and scientific assessment. 

This paper outlines the KaLC-paradigm, discusses some of the issues 
listed above and draws the epistemological and methodological conse­
quences important to discovery through a review of some of the results 

2 Assuming background knowledge may make some discovery problems easier to solve 
as for instance in E. M. Gold's recursive function identification, where the task is to 
identify indices for all total recursive functions R, the background knowledge is taken to 
be some subset of R. 
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obtained so far. 3 

2. The ~LC -paradigm 

2.1 Worlds, Hypotheses and Background Knowledge 

Define a data stream accordingly: 

Definition 2 Data Stream 
A data stream f is an w-sequence of natural numbers, i. e., f E WW. 

Hence, a data stream f = (aI' a2, ••• , an, ... ) consists of code numbers of 
evidence, i. e., at each stage i in inquiry, ai is the code number of all 
evidence acquired at this stage. 

Continue to define a possible world. 

Definition 3 Possible Worlds 
1. A possible world is a pair consisting of a data stream f and a state 

. coordinate n, i. e., (f, n) such that E E WW and nEw. 
2. The set of all possible worlds W = {(f, n) I f E ufY and nEw}. 

Let (E In) denote the handle of (E, n). Furthermore, let denote w < W the 
set of all finite initial segments of elements -in w. Now [f I n] denotes the 
fan of all infinite data streams that extends (f I n). Finally, let ~ = 

[f I n] x w denote the world fan. 
Next, methods cannot see an entire world (f, n) all at once. Instead 

the method must make do with only seeing some finite initial segment (f 
I n) of it which will increase as inquiry progresses. After the method has 
observed the world up until and including, say, n, the world is allowed 
to take any course it pleases. An ornithologist may have observed 1000 
black ravens up until and including n, but the world is free to show her 
a white or multi-colored raven at the very next stage of inquiry for all she 
knows. However, the world does not take multiple courses, say 7, A, 8 

3 Please refer to [Hendricks & Pedersen98a], [Hendricks & Pedersen98b]'[Hendricks & 
Pedersen98c], [Hendricks 99]. 
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for the same state coordinate; the world only takes its actual course (E, 
n). But for all the method knows at n, the world may pick any of 7., A, 
e to be its actual data stream E which the fan ~ represents. Froth n 
onward all data streams 7., A, e or t1 are all accessible world courses for 
the same parameter on time. Let [E I n]K represents the background 
knowledge K of possible empirical possibilities or values that the world 
may take according to the method. The method knows that the world will 
take some course, just not exactly which one. 

In accordance with the above, define background knowledge accor­
dingly: 

Definition 4 Background Knowledge 
Background Knowledge [E I n]K = HE I n] x w) I K}, K £ W. 

Next, an empirical hypothesis is a proposition whose correctness or 
incorrectness only depends upon the data stream. Therefore hypotheses 
will be identified with sets of possible worlds. 

Definition 5 Hypotheses are sets of possible worlds 
The set of all empirical hypotheses H = P( WW) X P( w). 

2.2 Relations of Correctness 

Consider the following two distinct definitions of correctness. The first 
definition is the one primarily entertained here even though the latter 
definition later on will be shown to carry some interesting properties with 
respect to the different definitions of knowledge. 

Definition 6 Epistemic Correctness 
Hypothesis h is correctE in world (E, n) iff [E I n]K n h ~ 0. 

Definition 7 Metaphysical Correctness 
Hypothesis h is correctM in world (E, n) iff (E, n) E h. 

The latter definition 7 will be referred to as the metaphysical notion of 
correctness as opposed the former epistemic notion of correctness (defini­
tion 6). The metaphysical notion says that h is correct in world (E, n) just 
in case the world (E, n) is singled out and included in h forever after. The 
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epistemic notion maintains that h is correct in (E, n) just in case (E, n) 
agrees with h up until and including n and from there on, the actual 
background knowledge [E I n]K must only have a non-empty intersection 
with h, though no actval world is be picked out. 

2.3 Methods of Scientific Inquiry 

Now, introduce two primitive types of inquiry methods: discovery and 
assessment methods. First, a discovery method conjectures hypotheses in 
response to the evidence seen so far. Formally a discovery method may 
be conceived as a function, usually denoted by 0 or 1', taking finite 
evidence sequences as inputs and outputting empirical hypotheses. 

Definition 8 Discovery Methods 
A discovery method 0 is a function from finite initial segments of 
evidence to hypotheses: 

0: w<w~H. 

Hypothesis 

f == n1a 

FIGURE 1: A discovery method is a function from finite initial seg­
ments of evidence to hypotheses. 

The stabilization modulus (abbreviated sniD) for a discovery method is the 
earliest possible time after which all the conjectures performed by the 
method include a consistent conjecture entailing a hypothesis h. 

Definition 9 Stabilization Modulus (Discovery Methods) 
smD (0, h, [E I n]K) = I1kvn ' n' ~ k, V(J,n') E [E I n]K: 0 (E In') 
£ h. 

That is, a method 0 discovers h in [E I n]K if and only if smD (0, h, [E I 
n ]K) exists. 

The second inquiry primitive consists of empirical hypothesis as-
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sessment. An assessment method is a function, usually denoted by ex or 
{3 taking finite evidence sequences and hypotheses as inputs and returning 
truth-values for the hypotheses in question. 

Definition 10 Assessment Methods 
An assessment method ex is a function from finite initial segments of 
evidence and hypotheses to {O, I}: 
ex: UJ<w X H ~ {O, I}, 
where 0 denotes incorrectness and 1 denotes correctness. 

Evidence 

Hypothesis 

f=ma 

FIGURE 2: An assessment method ex is a function from finite initial 
segments of evidence and hypotheses to {O, 1 } . 

The assessment method may only provide an output insofar h is correct. 
Then the method is said to be a verification method since it converges to 
1 if h is correct and whatever but converges to 1 if h is incorrect. If the 
method only provides an output insofar h is incorrect, the method is said 
to be a refutation method due to the fact that it converges to 0 if h is 
incorrect and anything but converges to 0 if h is correct. In case the 
assessment method ex is a combined verification and refutation procedure, 
the method will be referred to as a decision method. Hence a decision 
method demands convergence to the correct value for h, whatever the 
correct value is: 

Definition 11 Weak Limiting Decision Method ex of h in (E, n) 
ex decides h in the limit in (E, n) iff 
1. [if [E I n]K n h ~ 0 then 3kvn' ~ k: ex(h, E In') = 1], 
2. [if [E I n]K n h = 0 then 3kVn' ;;::: k: ex(h, E In') = 0]. 

Define the convergence modulus for a weak assessment method to be the 
earliest possible time after which all the conjectures performed by the 
method pertaining to the correct value for the hypothesis in question 
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remain the same (abbreviated cmA H'). 

Definition 12 Weak Convergence Modulus (Assessment Methods) 
cmA W(a,(E, n), h) = p,ky.n' n' ~ k: a(h, Elk) = a(h, E In'). 

One may propose a stronger definition of the limiting decision method 
such that a has to succeed in all worlds in accordance with the back­
ground knowledge [E I n]K rather than in (E, n) only. This gives rise to 
the strong limiting decision method: 

Definition 13 Strong Limiting Decision Method a of h in [E I n]K 
a decides h in the limit in [E I n]K iff 
1. [if [E I n]K n h ~ 0 then 3k ~ n, Vn' ~ k, V(I,n') E [E I n]K: 
a(h, Tin') = 1], 
2. [if [E I n]K n h = 0 then 3 k ~ n,vn' ~ k, v(J,n') E [E I n]K: 
a(h, Tin') = 0]. 

Finally, define the strong convergence modulus for an assessment method 
(abbreviated cmA

S
): 

Definition 14 Strong Convergence Modulus (Assessment Methods) 
cmAS(a,[E I n]K' h) = p,k ~ n,vn' ~ k, V(I,n') E [E I n]K: aCE I k) 
= aCT In'). 

2.4 Inducing Assessment from Discovery 

We promised to illuminate the relation between assessment and discovery 
and we propose that the claimed distinction between assessment and 
discovery is gratuitous. 

Initially suppose one adopts only discovery methods as primitives. 
Then even when discovery methods are the only primitives it is still 
possible to define assessment methods. It turns out, in the most general 
case that for every discovery method D one can induce an assessment 
method ex in the following way. 
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Proposition 15 Discovery and Strong Assessment 
If discovery method 0 discovers h in [E I n]K in the limit, then there 
exists a strong limiting assessment method 0'. which verifies h in [E 
I n]K in the limit. 

The proof may be found in [Hendricks & Pedersen 98b] and is con­
structed by letting the strong limiting assessment method watch the dis­
covery methods behavior and react accordingly: Assume that 0 discovers 
h in [E I n]K in the limit and let smD(o, h, [E I n]K) be its stabilization 
modulus. Define 0'. in the following way: 

O'.(h, (E In» = 1 iff O(E I n) £ h. 

It is clear that if n' ;;::: smD(o, h, [E I n]K) then for all (J ,n') E [E I n']K: 
OCT I n) £ h. Consequently O'.(h, (T In'» = 1 and therefore cmA\O'.,[E I 
n]K' h) = smD(o, h,,[E I n]K)' If the strong limtting assessment method 0'. 

is constructed in this way, say that assessment method 0'. is induced by 
discovery method O. 

One may induce a weak limiting assessment method in much the 
same way. 

Proposition 16 Discovery and Weak Assessment 
If discovery method 0 discovers h in [E I n]K in the limit, then there 
exists a weak limiting assessment method 0'. which verifies h in (E, 
n) in the limit. 

Inducing inquiry methods from discovery primitives will prove important 
later when discovery is further related to assessment in the limit of scien­
tific inquiry in terms of knowledge transmissibility. 

2.5 Defining Knowledge 

2.5.1 Non-restrictive Methodological Principles 
Certain non-restrictive methodological requirements will be placed on 
methods for discovery and assessment such that no method will be al­
lowed to arbitrarily discover or assess hypotheses relative to finite evi­
dence sequences. These requirements will be referred to as the epistemic 
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soundness criteria of the methods. It turns out that the criteria of epis­
temic soundness are of paramount importance. They make the methods 
epistemically stronger than they would have been if they did not comply 
with these principles. Hence these principles are non-restrictive at least 
insofar the methods are not supposed to be effective. 

Hence observe, that the following criterion of epistemic soundness 
is assumed for all discovery engines. 

Definition 17 Epistemic SoundnessD (Discovery) 
Discovery method 0 is epistemically soundD iff 
1. If (JL,m) E 0(7 I n) then (JL I n) = (7 In), 
2." 0(7 In) ~ 0. 

Hence, the hypothesis conjectured by discovery method 0 must be consis­
tent with the available evidence at n and the method is not allowed to 
conjecture absurdities. 

Assessment methods also obey a criterion of epistemic soundness but 
since emphasize is on discovery it is 'omitted here. Please refer to 
[Hendricks & Pedersen 98b]. 

2.5.2 Definitions of Kn~wledge 
Now, consider the following two definitions of knowledge based first on 
empirical hypothesis discovery (investigated in [Hendricks & Pedersen 
98a]): 

Definition 18 Stable Correct Belief (ST) 
Ko STh -is correct in (E, n) iff 
1. [E I n]K n h ~ 0 
2. Vn' ~ n, V(7,n') E [E I n]K: 

2. a 0(7 In') ~ h. 

Hence 0 knows h in world (E, n) just in case 0 truly conjectures h along 
E at n and no matter what 0 sees later, 0 continues to produce a consistent 
conjecture entailing h. This very feature gives rise to its name: stable 
correct belief. 
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Definition 19 Strong Knowledge (SK) 
K/Kh is correct in (f, n) iff 
1. [f I n]K n h ~ 0, 
2. "In' ~ n, V(7,n') E ,[f I n]K: 

2. a o( Tin ') £; h, ' 
2.b (7,n') E 0(7 In'). 

This latter definition implies entailment of h by the evidence and the 
background knowledge, which indeed is a strong definition of knowledge. 
Hence if h is correct, 0 eventu:llly discovers it, and if h is incorrect, 0 
doesn't conjecture it - 0 is reliable. The correct answer is forced by the 
data and the background knowledge. 

In accordance with limiting assessment, next define AST-knowledge 
accordingly: 

Definition 20 Actually Stable True Belief (AST) 
Ka ASTh is correct in (f, n) iff' 
1. [f I n]K n h ~ 0, 
2. a decides h in the limit in (f, n). 

Observe that AST-knowledge is not reliably derived. We require that for 
the assessment method to be reliable it has to succeed unambiguously in 
all worlds in accordance with the background knowledge and hence adopt 
the strong limiting decision procedure while defining RISK-knowledge: 

Definition 21 Reliably Inferred Stable True Belief in K (RISK) 
Ka RISK h is correct in (f, n) iff 
1. [f I nh n h ~ 0, 
2. a decides h in the limit in (f, n). 

2.6 The Formalization 

This set-theoretical framework is formalizable in a modal propositional 
logic. The formal set-up is fully described in [Hendricks & Pedersen 
98a]. In brief however, let the modal propositional language L consists 
of: 

• An infinite supply of propositional letters a,b,c, ... , and brackets: (, 



DISCOVERY, KNOWLEDGE AND RELIABLE LIMITING CONVERGENCE 107 

). 
• The boolean operators --', 1\, v, => and #. 

• A unary modal operator XXz (read: method Z knows that. .. ) for an 
arbitrary inquiry method of either assessment or discovery, for x E 
{ST, SK, AST, RISK} and for which the dual operator is defined as 
--, K! z --, . 

• Defining well-formed (wft) formulae follow standard procedure in 
accordance with the boolean operators, the unary operator and the 
closure condition. 

• Transformation rules include (1) uniform substitution, (2) modus 
ponens, (3) the rule of necessitation. 

Semantically, a model M is defined with respect to the set of possible 
worlds such that M = < W,'P~Z> where"the denotation function 'P maps 
proposition letters into the powerset of W; cp (a) £; W. So proposition 
letters denote hypotheses and, by recursion, all wffs will denote hypothe­
ses. Defining truth-conditions for the boolean operators follow the usual 
recursive recipe. For the unary operator define for example AST-know­
ledge accordingly: 

Definition 22 Truth-conditions for KexASTA. 

'PM, (E, n)[K/ST A] = 1 iff 
3. [E I n]K n [A]M ~ 0," 
4. Ci. decides [A]M in the limit in (E, n); 

Truth-conditions for RISK, ST and SK knowledge are defined in the same 
way furnishing the obvious modifications. 

3. Significant Epistemological Results 

Let E be an arbitrary inquiry method of either assessment or discovery. 
Then the modal system S4 consists of the following axioms. 

i. KzA => A. AXIOM OF TRUTH (1). Interpretation. If method j knows 
A, then A is true. 

ii. Kz(A => C) => (KzA => KzC). DEDUCTIVE COGENCY AXIOM @. 
Interpretation: If the method correctly converges to A => C, then if 
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the method also correctly converges to A, the method correctly 
converges to C. 

iii. KzA f KzKzA. SELF-AWARENESS AXIOM (or the KK-THESIS) (4). 
Interpretation: The method knows the data streams on which it cor­
rectly converges. So if the method correctly converges to A, the 
method correctly converges to the belief that the method is conver­
ging. 

3.1 Soundness 

The following four propositions regarding knowledge have already been 
proved and reveals something about the strengths of the different defini­
tions of knowledge entertained. 

Proposition 23 ST, SK, AST, RISK and S4. [Hendricks & 
Pedersen 98a, 98b] 
If knowledge is defined as either ST, SK, AST or RISK, then know­
ledge validates S4. 

3.2 A Negative Result with a Positive Outcome 

Suppose knowledge is defined as strong knowledge in accordance with 
definition 19 and its obvious modal counterpart. Then the strongest modal 
system S5 consists of the Axiom of Truth, Deductive Cogency Axiom 
and the following axiom (5): 

referred to as the Axiom of Wisdom. Now the following property holds: 

Proposition 24 SK and S4. [Hendricks & Pedersen 98a] 
If knowledge is defined as SK, then knowledge cannot validate the 
Axiom of Wisdom and consequently neither satisfy S5. 

Some significant epistemological consequences follow from proposition 
24. Indeed some skeptics have argued that if knowledge is anything worth 
pursuing at all, then it should be of the metaphysical reality. Then again 
they argue that such an endeavor is futile from the outset. According to 
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the Academic skeptics, the only thing they know is that they do not 
know. For the Academic skeptics this axiom holds both for all possible 
convergence criteria. But insofar it holds a finite time convergence crite­
rion the Pyrrhonian skeptic Sextus Empiricus launched the classical 
diagonal argument against inductive inference and hereby attacked the 
Academic skeptics by concluding that their position was just as dogmatic 
as Sextus took Plato's conception of knowledge to be. But suppose the 
Axiom of Wisdom only is designed to hold in the limiting case. Then the 
Academics could in principle argue that they always are in the advanta­
geous position of possessing a reliable method enabling them to converge 
to the fact that they do not know. However proposition 24 reveals that if 
knowledge as convergence is taken seriously, then if convergence has not 
arised we simply do not know. The essential reason is that there is no 
way to control o's behavior prior to the modulus of convergence. We 
cannot know that we do not even for the strongest possible conceptions 
of knowledge and correctness even in the limiting case. And this goes 
whether we insist on being ambitious epistemologists repelling attacks 
from knowledge skepticism ala the Academics or insist on being Aca­
demics ourselves. In sum,· one cannot converge to ones ignorance -
Sextus said so in finite time and proposition 24 says so in the limit. 

3.3 Knowledge Transmissibility. 

Final clarification of the relations· between assessment and discovery in 
the limit of scientific inquiry may be accomplished by studying the con­
ditions of knowledge transmissibility. Under what circumstances may one 
method transfer its knowledge of a hypothesis to another method when 
this latter method. is equipped only with knowledge of the former meth­
od's knowledge of some particular hypothesis in question. 
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FIGURE 3: Knowledge transmissibility for discovery methods 

Knowledge transmissibility was first studied by Hintikka in [Hintikka 
62] by considering whether 

held for his definition of knowledge where a,b denote agents or methods 
and p denotes some arbitrary proposition. But in its simple form KJ(.bP 
=> KJ? will not immediately work here in the limiting convergence para- . 
digm since we have multiple methods and . multiple definitions of know­
ledge. Hence 'care has to be taken to respect these additional constraints. 
For instance, not only is it possible that a method 0 having, say, ST­
knowledge of the fact that another 'Y has SK-knowledge of some hypothe­
sis A, may obtain ST-knowledge of this hypothesis A. But may 0 even 
obtain strong knowledge of the hypothesis that 'Y has strong knowledge 
of and insofar bargain its way to convert its ST -knowledge to SK-know­
ledge? Furthermore, since discovery methods can induce assessment 
methods under certain circumstances does it follow that 0 may, by obser­
ving assessment method a's behavior, change its knowledge type from 
one based on discovery to one based on assessment, i. e., does 
K/TKc/ISKA => K/1SKA for instance hold? In general we consider whether 
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is valid for all possible legitimate combinations of methods and "know­
ledges". Call a transmissibility instance legitimate if it results from not 
confusing types of knowledge based on assessment methods (ex, (3) with 
types of knowledge based on discovery methods (0, 1'). For instance 

constitutes an illegitimate transmissibility instance since an assessment 
method a cannot be accredited with ST- nor SK-knowledge directly as 
little as a discovery method l' may be accredited with RIST-knowledge 
directly - only through possible discovery inducement. Formally respec­
ting this additional feature of inducement requires supplying the modal 
system S4 with what we have called multiple method extensions MMS 
(See additionally [Hendricks & Pedersen 98b]. 

3.3.1 Uniform Transmissibility' 
Call knowiedge transmissibility uniform if it results from two different 
methods of the same inquiry type (either discovery or assessment exclu­
sively) holding the same kind of knowledge. Then the following theorem 
holds: 

Theorem 25 Uniform Transmissibility [Hendricks & Pedersen 98b] 

Method Kl KiA, KezA 

Discovery 1. x,y E {ST} z E lSTl KoJlA 

e E to}, t!.t E {I'} 2. x,y E {SK} z E {SK} Ko')l\A 

Assessment 3. x,y E {AST} z E {AST} Kart Jl A 

e E {ex}, E E {(3} 4. x,y E {RISK} z E {RISK} KaJU')l\A 

3.3.2 Semi-uniform Transmissibility 
Call knowledge transmissibility semi-uniform if it results from two dif­
ferent methods of the same inquiry type (either discovery or assessment 
exclusively) holding different kinds of knowledge based either on dis­
covery or assessment exclusively. Then the following theorem holds: 
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Theorem 26 Semi-uniform Transmissibility [Hendricks & Pedersen 98b] 

Method KeY K-/A KezA 

Discovery 1. x E {SK}, z E {ST} KoMA 
Y E {ST} 

e E to}, E E {'Y} 2. x E {SK}, z E {SK} -
Y E {ST} 

3. xE {ST}, z E {SK} Ko')Jl.A 
Y E {SK} 

4. x E {ST}, z E {ST} KO')lA 
Y E {SK} 

Assessment 
e E {ex}, E E {{J} 5. x E {RISK}, z E {AST} KaliMA 

y E {AST} 
6. x E {RISK}, z E {RISK} -

Y E {AST} 
7. x E {AST}, z E {RISK} Kal(J')l\A 

y E {RISK} 
8. x E {AST}, z E {AST} KaAMA 

y E {RISK} 

3.3.3 Non-uniform Transmissibility 
Finally, call knowledge transmissibility non-uniform (or mixed) if it 
results from two different methods of different inquiry type" (either dis­
covery or assessment) holding different kinds of knowledge based either 
on discovery or assessment. Then the following theorem holds: 
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Theorem 27 Uniform Transmissibility [Hendricks & Pedersen 98b] 

Method KeY K;/A KezA 

e E {a} l. x E {AST}, Y E {NST} z E {AST} Kt;)lA 

t:!. E {D} 2. x E {AST}, Y E {NST} z E {AST} -

e E to} 3. x E {AST}, Y E {SK} z E {SK} KO;)/IA 

E Eta} 4. x E {AST}, Y E {SK} z E {AST} Kt~lA 

e E {a} 5. x E {ST}, Y E {AST} z E {AST} Kt;)lA 

t:!. E. {D} 6 x E {ST},y E {AST} z E {ST} -

e E {a} 7. x E {SK}, Y E {AST} z E {AST} KO/l;)lA 

E E to} 8. x E {SK}, Y E {AST} z E {SK} -

e E {a} 9. x E {SK},y E {RlSK}' z E KoK1;)J<,. 

{RlSK} A 
t:!. E to} 10. x E {SK}, Y E {RlSK} z E {SK} -

e E {a} 11. x E {ST}, Y E {RISK} z E {ST} KO;)lA 

~ E to} 12. x E {ST}, Y E {RlSK} z E {ST} Ko;)lA 

The classical dichotomy emphasizing the difference between assessment 
and discovery is simply false from the limiting convergence point of 
view. Discovery methods can induce assessment methods - even reliable 
ones. The classical dichotomy conversely claims that only assessment 
methods may provide reliable means for getting to the correct answer. 
But it has been shown that even unreliable discovery methods, (i. e,.ST­
knowledge engines) may induce reliable assessment methods both in the 
weak and in the strong sense. Finally, knowledge transmissibility taught 
us how assessment and discovery may converge in the limit of empirical 
scientific inquiry so in the (limiting) end there is not much of a difference 
between assessment and discovery (Theorem 27). 
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4. Conclusion 

We have attempted to show how some pertinent philosophical and metho­
dological issues related to scientific discovery may be adequately dealt 
with in the KaLC-paradigm.· 

Some may object, first of all, that the model of scientific discovery 
presented is oversimplified. The model does not take into account that 
much theory identification includes the formation of new theoretical 
concepts to describe the (in)-discrete observations properly. True, but that 
only goes to show that their is a substantial difference between inductive 
discovery, discussed currently, and abductive discovery. Abductive is 
genuinely more complicated than inductive discovery because it requires 
a leap out of the vocabulary of the evidence language forming new the­
oretical concepts in the hypothesis language. 

Secondly, some may correctly point out that inference to the best 
explanation (lBE) is not dealt with in any significant way either. Again, 
there is also a difference between IBE and inductive discovery. IBE 
consists of an enumeration and selection algorithm for choosing between 
competing hypotheses in case truth is underdetermined. But then IBE is 
a sort of assessment method rather than a discovery method. The hypo­
theses subject to enumeration by an IBE-method may be either abduc­
tively or inductively related to the evidence language. The challenge for 
IBE-methodology is to provide some adequate measure of "best" and 
attempts have been made to cash it out by following methodological 
principles like simplicity, coherence, unification, consilience, entren­
cement, consistency to mention but a few. However observe that if a 
methodologist favors myopic inquiry (gaining truths and avoiding errors) 
as Levi calls it (as opposed to categorical methodology or messianic 
inquiry in which the norms are motivated, not hypothetically, as means 
for finding the truth, but categorically as ends in themselves) she has to 
ensure that the methodologicai principles advocated, for a proper IBE­
algorithm, are truth-conducive,· non-restrictive and reliable means for 
getting to the truth. 

Finally we point to some further applications of the KaLC -paradigm. 
Note initially that the definitions of knowledge presented here by no 
means are the only entertainable ones - the list of possible definitions is 
inexhaustible. Second it is possible to define both belief- and certainty­
operators for which their respective strengths may be subject to inves-
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tigation. Additionally one may also choose to consider the interrelations 
between knowledge, belief and certainty through conditions of general 
epistemic transmissibility. Note that the hypotheses under investigation 
have been primitively identified with the set of possible worlds in which 
they are true but since the K.tLC -paradigm automatically features a 
branching time model of possible worlds, modal learning may also be 
dependent upon, not only the methodological recommendations, but also 
the temporal complexity of the hypotheses [Hendricks & Pedersen98d]. 
Finally, we now know that the entertained definitions of knowledge 
validate the axioms listed, i. e., soundness but we do not know yet 
whether or not these axioms are exhaustive for the respective definitions. 
Proofs of completeness reveal such facts. All these further investigations 
are to be found in [Hendricks 99]. 
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