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A COMPUTATIONAL DEFINITION OF 'CONSILIENCE' 

Jose Hernandez-Orallo 

ABSTRACT 

This paper defines in a fonnal and computational way the notion of 'consilience', a tenn 
introduced by Whewell in 1847 for the evaluation of scientific theories. Infonnally, as has 
been used to date, a model or theory is 'con"silient' if it is predictive, explanatory and 
unifies the evidence. Centred in a constructive framework, where new tenns can be intro­
duced", we essay a fonnalisation of the idea of unification based on the avoidance of 'sepa­
ration'. However, it is soon manifest that this classical approach is vulnerable to the 
introduction of fantastic concepts to unify disparate sub-theories. Our second approach is 
constructed by using a detailed evaluation of the relationship between the theory and the 
evidence by means of reinforcement propagation. With the use of reinforcement, fantastic 
concepts can be better detected and the role of consilience for theory construction and 
revision can be specialised for different inference mechanisms like explanatory induction, 
abduction, deduction and analogy. 

1. Introduction 

In 1847, Whewell coined a new term, 'consilience', to comprise the 
relevant basics in scientific theories: prediction, explanation and unifica­
tion of fields. Since all of these criteria are desirable, consilience was 
informally introduced as a fundamental issue for theory construction and 
modelling. However, a unified, formal and computational definition has 
not been presented to date, integrating in a consistent way prediction, 
explanation and unification of fields, allowing the growth and revision of 
knowledge. 

Throughout the paper we will deal with the process of non-deductive 
or hypothetical inference, i.e., the reasoning process usually represented 
by Science (or by everyday learning and explanation). Given some evi-
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dence E composed of facts, the goal is to obtain a theory T which ex­
plains E orland allows the prediction of future facts. A 'bias' (3 is the 
expressive framework where hypotheses can be constructed on. The 
complexity of learning is directly related with the specificity of the bias 
and the background knowledge B, which is usually expressed under the 
same bias as the hypotheses. 

Usually, we use the term theory to comprise the hypothesis H jointly 
with the necessary auxiliary concepts from the background knowledge. 
We will use the term model to designate a theory which introduces new 
constructed terms or extends the vocabulary of the bias. For this to 
happen the bias must be flexible enough to allow the creation of concepts 
(also known as predicate invention) and it must perform some kind of 
abstraction. 

Our goal is precisely to define a measure of consilience for construc­
tive languages, where new terms can be introduced or created. The idea 
of unification is straightforward when the hypothesis vocabulary is in­
cluded in the vocabulary of the background knowledge and the evidence, 
because 'fantastic' new concepts are restricted. The same does not hold, 
however, for constructive languages. 

In the following, we will work with representational languages which 
are composed of rules, components, chunks or whatever other recog­
nisable parts. We will denote that a theory T covers an example e by T 
1= e. In particular, all the examples throughout the paper are either logical 
theories or equational theories,. expressible in a computational logical or 
functional language (e.g., Prolog, Lisp, ML, Haskell, ... ). Although 
scientific theories are not usually expressed under these formalisms, we 
have chosen computational theories for the examples in order to show 
that our notion of consilience is fully computational. 

2. Distinguishing Consilience 

Before trying to define consilience we must distinguish it from other very 
related concepts. 

There are evaluation criteria which are intrinsic, i.e., the theory can 
be evaluated by exclusively regarding to the hypothesis, like the MDL 
principle (or Occam's Razor formalised). However, consilience is a 
'structural' criterion, because it studies how the hypothesis covers the 
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evidence. More concretely, consilience is mainly characterised by a 
unified covering of the evidence or, in misspelled words, the evidence is 
'consiliated' by the theory. There are different ways to evaluate this 
'conciliation'. One can measure the consilience of a hypothesis H alone 
(more appropriate for induction) or one can measure the consilience of 
the H + B (more appropriate for abduction). 

The first trait of consilience is prediction. The predictions of a con­
silient theory must be plausible, so fantasies should be avoided. More­
over, it must allow the prediction of future cases, so extensional defini­
tions should not be permitted. This has motivated some confusion bet­
ween intensionality, seen as an intolerance of partial extensionality or 
exceptions, and consilience. The following example clarifies the dif­
ference between intensionalityand consilience: 

EXAMPLE 2.1 
Given the evidence E = {fr, h, ... flO } and the following hypotheses: 
T= { til t2 }, T= {t"} and T'= {t'J' t'2' t'3} 

Evidence 

The second trait of consilience is explanation. Therefore consilience has 
always been alluded in the context of scientific explanation or explanatory 
induction (Harman 1965, Hempel 1965, Ernis 1968). Moreover, one of 
the important traits of abduction, seen as the inference to the best expla­
nation, is that the abductive hypothesis (known as assumption) must be 
the most 'compliant' with the background knowledge. This can be iden­
tified with the notion of 'coherence' (Thagard 1978). We will discuss in 
more detail the relationship between coherence and consilience in section 
8.2. 

The third and more distinguished trait in consilience, unification, is 
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very close to the principle of 'Common Cause' (Reichenbach 1956). 
However, consilience is a criterion which does not deal with causation or 
time dependencies, just 'uses' dependencies, and that simply prefers 
'unifying' theories over separate ones. 

3. Towards Computational Consilience 

From a semantic point of view, a theory is characterised by the data it 
covers or models. Whatever the representational language, we will denote 
with Ext(1) the extension, scope or covering of a theory T, i.e., Ext(1) 
=. {f: T I = f }. 

From this elementary start point, we could investigate a purely 
semantic definition of consilience, based· on its contrary notion, the idea 
of separation. 

DEFINITION 3. 1. Separable Theories 
A theory T is n-separable in the partition of different theories II = 
{ T I , T2 , .. ·, Tn } iff Ext(1) = U i =l..n Ext(~) and Vi =l..n Ext(~) -;&: 

0. 

However, from this definition, we can specialise the notion of separation 
in many different ways, giving the following modes of-separation: 
I. non-empty: Exactly as DEFINITION 1. 
II. non-subset: DEF 1 and Vi .. j = l..n (Pi £ Pj => i=j). 
III. disjoint: DEF 1 and Vi .. j = l..n (Pi n lj= 0). 
IV. non-subset extension: DEF. 1 and Vi .. j=l..n (Ext(P) £ Ext(P) => i;~j). 
V. disjoint extension: DEF 1 and Vi .. j = l..n (Ext(Pi) n Ext(P} = 0). 
If we define a theory as consilient iff it is not separable, the preceding 
five modes give five characterisations of consilient theories. 

EXAMPLE 3.2. (using logic theories): 
PI = { pea). q(X) :- reX). rea). } is separable for all modes into II = 

{ { pea) }, { q(X) :- reX). rea) }}. 
P 2 = { q(X) : - r(X). r(b). } is not separable for modes ii to v. 
P3 = { q(X) :- reX). p(X) :- reX). rea). } is non-subset (extension) 

separable into II = {{ q(X) :- reX). rea) }, { p(X) :- reX). rea). 
}} but it is not disjoint (extension) separable. 
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P4 = { q(a). p(X) :- q(X). pea) } is non-subset (extension) and dis­
joint separable into II = { { q(a). p(X) :- q(X). }, { pea). } } 
but it is not disjoint extension separable. But there is partition II' 
= { { q(a). } { p(X) :- q(X). pea). } } which is. 

Ps= { seX) :- p(X), q(b). p(X) :- q(X). t(X) :- p(X), q(a) } is non­
subset (extension) and disjoint extension separable into II = { 

{ seX) :- p(X), q(b). p(X) :- q(X) }, { p(X) :- q(X) , t(X) 
p(X) , q(a) } but it is not disjoint separable. 

Several problems can be detected from the previous example. Modes I, 
II, and IV are so strict that they do not allow any modularity at all. On 
the contrary, modes III, IV, and V can be 'conciliated' in a tricky way. 

3.1 Fantastic Concepts 

Before scientific criteria were gaining acceptance after the Renaissence, 
most of phenomena in nature were accounted by fantastic explanations: 
the rain was explained as the tears of the gods, the stars were the wholes 
of a cloak behind which a luminous Heaven was covered, and so forth. 
Almost anything was explained by divine whim. These concepts were all 
unifying (in fact, divinity can be seen as the most unifying concept), 
however, they lacked from observed causality, necessity or existence. 

It is difficult to formalise what is a fantastic concept, and much of it 
depends of having alternative, more plausible explanations. However, 
there is a kind of fantastic concepts that.can be easily formalised. 

DEFINITION 3.3. Fantastic Concept 
A fantastic concept f is a rule or fact that is constructed to be neces­
sary for the rest of the rules of a given theory, by modifying all their 
conditions. 

After this definition, one may think that fantastic concepts is something 
that should not be done and, consequently, easily avoidable. However, 
the problem is in the other sense: to detect a fantastic concept from a 
given theory. The idea that a fantastic concept is a rule that can be re­
moved from a theory (and all of their uses), such that the theory has still 
the same power, is correct, however, there are very intricate ways to hide 
a fantastic concept. 
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In example 3.2, for instance, P j can be 'conciliated' by a fantastic 
concept/into P\ = { p(a) :- f. q(X) :- r(X), f. r(a):- f. f. } for modes iii­
iv. 

A deeper reflection on the notion of fantastic concepts leads us to the 
conclusion that a strictly semantic approach is not sufficient for defining 
consilience. Accordingly, the next section presents a structural approach. 

4. Reinforcement 

For our goal of defining consilience, it is more appropriate to establish 
in further detail the relation between the hypothesis and the evidence. 
Furthermore, it would be more accurate to talk about a degree of con­
silience instead of 'consilient' or 'unconsilient' theories. 

In (Hernandez-OralIo 2000) several theory analysis and evaluation 
measurements are presented based on the idea of reinforcement. The idea 
of reinforcement to validate a theory has been supported by many psycho­
logical studies on ontology and epistemology. Whatever the approach to 
knowledge construction, the construction or revision of knowledge must 
come from a gain or loss, respectively, of reinforcement, also known as 
apportionment of credit (Holland et al. 1986). From (Hernandez-OralIo 
2000), we adapt in this· section the basic constructions to compute the 
reinforcement degree for a given theory, depending on past observations, 
and for the evidence from the point of view of the evidence itself. 

DEFINITION 4 .1. Necessary Component 
Given a theory, a rule or component ri is necessary for e iff T I = 
e /\ T - { ri } I ~ e. 
DEFINITION 4.2. Reduced Theory 
A theory T is reduced for e iff T I = e /\ --, 3 ri E T such that it is 
not necessary for e. 

We will say that two sub-theories Sj, S2 are alternative models of T for 
e iff Sj C T, S2 C T, Sj ~ S2 and Sj' S2 are reduced for e. From here, 
we can define ModeZs( e, T) as the set of alternative models for example 
e with respect to T. 
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DEFINITION 4.3. Alternative Models 
Models(e, 1) = { SeT: S is reduced for e }. 

We can particularise definition 4.3. by defining ModelsrCe, 1) as the set 
of alternative models for example e with respect to T that contain r. 
Formally, 

DEFINITION 4.4. Alternative Models which contain r: 
Modelsr(e, 1) = { S C Models (e, 1) 1\ rES}. 

With these definitions, it is straightforward to define reinforcement. 

DEFINITION 4.5. Pure Reinforcement. 
The pure reinforcement pp(r) of a rule r from a theory T wrt. to 
some given observation E = { e1, e2 , ••• , en } is computed as the 
number of models of ei where r is used. If there are more than one 
model for a given ei, all of them are reckoned. In the same model, 
a rule is computed once. Formally, pp(r)= Ei=1..n card(ModelsrCei , 

1)) 
DEFINITION 4.6. Normalised Reinforcement 
per) = 1 - 2-pp(r). 

The last definition is motivated by the convenience of a :::; per) :::; 1. 
From these definitions some properties are proven in (Hernandez­

OralIo 2000). For instance, the most reinforced theory is not the shortest 
one in general, but, in the limit, simplicity is a good criterion to obtain 
consilience. However it is important to remark that, somehow surprising­
ly, even some kind of redundancy (investment) does not necessarily imply 
a loss of reinforcement ratio. 

Nonetheless, this measure of reinforcement of the theory could 
unfairly increase by the introduction of fantastic concepts. The rationale 
relies on the fact that an invented rule, used in every other rule of the 
theory, could unjustifiably increase the reinforcement ratio of a theory. 
Since it is difficult to detect whether these rules are invented or not, 
simplicity is a reasonable criterion to avoid these fantastic concepts. 
However, there is a different way out to measure the validation wrt. the 
data: 
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DEFINITION 4.7. Reinforcement wrt. the Data. 
The course X(J) of a given fact f wrt. a theory is computed as the 
product of all the reinforcements per) of all the rules r used in the 
model off. If a rule is used more than once, it is computed once. If 
f has more than one model, we select the greatest course. Formally, 
X(J) = max s C Modelsif, n { fir E S per) } 

With this definition, it is proven in (Hernandez-Orallo 2000) that no 
fantastic rule can be added in the previous way, but the good properties 
of the original definition are still preserved. 

5. Selection Criteria 

Once the grounds of the theory are ensured by the measurement of the 
course of the evidence instead of the normalised reinforcement of the 
theory, we can construct different selection criteria. The first idea is to 
select the theory T with the greatest mean of the courses of all the data 
(evidence E) presented so far, denoted by mx(T,E). If the language is 
expressible enough there is always a theory for every evidence (just 
choose every example as an extensional rule) and this extensional theory 
has mx(T,E) = 0.5. In the following we will say that a theory is worthy 
iff mx(T,E) ~ 0.5. 

In explanatory induction, however, it is not sufficient to force a great 
mean. In order to obtain a more compensated theory, a geometric mean 
can be used instead. Even more, any anomaly should be banned. Conse­
quently, one would discard theories where a fact has a course value less 
than the mean divided by an intensionality constant. 

The following example shows the use of mx. However, other criteria 
which have been commented could also be used. 

EXAMPLE 5.1. (using equational theories) 
Consider the following evidence e1-e lO : 

E = { e1: e(4) ~ true, e2 : e(12)""" true, 
e3 : e(3) ~ false, e4 : e(2)""" true, 
es: e(7) ~ false, e6: e'(7)....,. false, 
e7 : e(20) ~ true, e8: e(O)""" true, 
e9 : 0(3) ~ true, elQ: 0(2)....,. false} 
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where natural numbers are represented as e.g. s(s(s(O») means 3. 
Ta= { ral: e(s(s(X» ~ e(X) : 7 0.992 

r a2 : e(O) ~ true : 5 0.969 
- ra3: e(s(O» ~ false : 3 0.875 
ra4 : o(s(s(X» ~ o(X) : 2 0.75 
r as: 0(0) ~ false : 1 0.5 
ra6: o(s(O» ~ true : 1 0.5} 

The courses are x(e l , e2, e4 , e7 , eg) = 0.992 • 0.969 = 0.961, x(e3 , 

es, e6) = 0.992 • 0.875 = 0.868, x(e9) = 0.75 • 0.5 = 0.375 and 
x(e lO) = 0.75 • 0.5 = 0.375. The mean course mx is 0.8159. So, 
it is a worthy theory. 
Tb= { rbl : e(s(s(X» ~ e(X) : 9 0.998 

rb2 : e(O) ~ true : 6 0.984 
rb3: e(s(O» ~ false : 4 0.938 
r b4 : o(X) ~ not(e(X» : 2 0.75 
rbS: not (true) ~ false : 1 0.5 
rb6: not(false) ~ true : 1 0.5} 

The courses are x(eJ, e2, e4 , e7, eg) = 0.998 • 0.984 = 0.982, x(e3 , 

es, e6) = 0.998 • 0.938 = 0.936,- x(e9) = 0.75 • 0.5 • 0.998 • 
- 0.938 = 0.351 and x(elO) = 0.75 • 0.5 • 0.998 • 0.984 = 0.368. 

The mean course mx is 0.8437. So, it is a worthy theory. 

This example provides more insight in our goal of defining consilience. 
Ta can be split without loss of reinforcement because there are no shared 
rules between- the definition of odd and the definition of even. However 
Tb has been more 'conciliated' by the use of a new invented term (in this 
case negation), which makes that it cannot be separated without loss- of 
reinforcement. The following section formalises this idea. 

6. Computational Consilience 

The idea of separation is still necessary for any definition of consilience: 

DEFINITION 6.1. 
A theory T is divisible wrt. an evidence E iff 3TI, T2 : TI C T, T2 
C T and T I ~ T2 such that VeE E : TIl = e V T 2 I = e. 
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However, it is not sufficient, as we have seen. We will use the following 
notation E1 = { e E E : T 1 I = e }, ~ = { e E E : T 2 I = e }, E12 = 

E1 n E2, and finally we will use the term SX(T1 EB T2, E) to denote 
mx(T1, E1) • [card(E1) - 1/2 • card(E12)] + mx(T2, E2) • [card(E2) - 1/2 • 

card(E12)] • 

DEFINITION 6.2. 
A theory T is consilient wrt. an evidence E iff there does not exist 
a partition T 1, T2 such that: SX(T1 EB T2, E) ~ mx(T, E) • card(E). 

In other words, a theory T is consilient wrt. an evidence E iff there does 
not exist a bi-partition PE p(T), such that every example of E is still 
covered separately without loss of reinforcement. 

For example 5.1, Ta is divisible into T 1a = { ra1 , ra2 , ra3 } and T2a = 
{ ra4 , r a5, ra6 } and SX(T1a EB T2a, E) = 0.9261 • [8 - 1/2 • 0] + 0.375 • 
[2 - 1/2 • 0] = 8.159 = mx(Ta, E) • 10. In this way, Ta is not consilient. 
On the contrary, it can be shown that there is no partition of Tb to make 
true the disequality of definition 6.2. 

The next example shows that consilience is again a delicate notion: 

EXAMPLE 6.1. (using Horn theories) 
Consider the following extensional theory T = { p. q. } for the fol­
lowing simple theory E= { p', q }. As expected, mx(T, E) = (0.5 + 

. 0.5) / 2 = 0.5 and by using the partition T1 = { p. }, T2= { q. } is 
easy to show that it is not consilient. 
The trick is again the addition of a new fantastic rule f in the fol­
lowing way: T= { p:- f. q:- f. f }. As we have said, the mean 
course is robust to this kind of tricks; and it is clearly lower: mx(T', 
E) = (0.5 • 0.75 + 0.5 • 0.75) / 2 = 0.375. However, the only 
partition which is now possible, T 1 = { p:- f. f}, T 2 = { q:-f. f. } 
gives that SX(T'1 EB T'2' E)= 0.25 • [1 - 1h • 0] + 0.25 • [1 - 1/2 

• 0] = 0.5 < mx(T', E) • 2. The result is that T' is consilient! 

This example can be interpreted in two ways. If one has T and tries to 
make it consilient by using a fantastic concept, one would get an impor­
tant decrease in mx(T', E) enough for discarding T'. On the other hand, 
if one considers T' from scratch (without knowing 1), one could be 
cheated by the illusion that T' is a good consilient theory if these invented 
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concepts were difficult to detect. 
It is important to realise that definition 6.2. is reliable; independently 

from whether the unifying concept would be fantastic or not, the theory 
is properly consilient. 

The aftermath harmonises with the classical rationale of the plausi­
bility of a theory: it depends on the intuition, intelligence or whatever 
other ability to unveil fantasies by comparing the current theory with 
other competing theories. The advantage of our measures of mean course 
and consilience based on reinforcement is that the first one avoids fantas­
tic concepts, so giving an approximation to plausibility, which must be 
weighed up with consilience. 

The following example shows the use of mx and consilience in the 
context of abduction and background knowledge. In this case, invented 
concepts are more difficult to introduce if the background knowledge 
cannot be modified by adding a fantastic rule. 

EXAMPLE 6.2. (using extended logic theories) 
Let us suppose that on the nineteenth century a biologist has the 
following incomplete but fully validated background knowledge B, 
(vrEB per) = 1). 
B = { rb1 : Vertebrate(X) : - Fish(X) 

r b2: Vertebrate(X) : -. Reptile(X) 
rb3: Vertebrate(X) :- Bird(X) 
rb4 : Vertebrate(X) :- 'Mammal(X) 
rbS: Has-wings(X) V Has-fins(X) :- Bird(X) 
rb6: Has-wings(X). V Has-fins(X) :- Echo-locates(X), Mam­
mal (X) 
rb7 : Hasn't-jaw(X) :- Agnathous (X) 
r b8: Creeps(X) : - Reptile(X) 
rb9: Marine(X) :- Fish(X) 
rblO: Marine(X) :- Cephalopod(X) } 

After performing some observations and dissections to a sample of 
animals from the Pacific Ocean, some hypotheses can be abduced: 
El = { e1: Vertebrate(a), e2: Creeps(a)} 
hI = El mx(B+h1, E1) = 0.5 
h2 = { Reptile(a). } mx(B+ h2' E1) = 0.75 
Moreover h2 is consilient wrt. E 1• 

E2 = { e3 : Vertebrate(b), e4 : Marine(b)} 
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h3 = E2 mx(B+h3, E2) = 0.5 
h4 = { Fish(b). } mx(B+ h4, E2) = 0.75 
hs = { Cephalopod(b). Vertebrate(b).} mx(B+hs, E2) = 0.5 
Only h4' is consilient. Note that, according to B, hs is consistent. 
E3 = { es: Vertebrate (c) , e6: Has-wings(c)} 
h6 = E4 mx(B+h6, E3) = 0.5 
h7 = { Bird(c). } mx(B+h7, E3) = 0.75 
h~ = { Echo-locates(c). Mammal(c). } mx(B+hs, E3) = 0.625 
Both h7 and hs are consilient. 
E4 = { e7: Vertebrate (d), es: Hasn't-jaw(d)} 
hg = E4 mx(B+hg, E4) = 0.5 
hlO = { Agnathous(d). Vertebrate(d). } mx(B+h lO, E4) = 0.5 
hll = { Agnathous(d). Vertebrate(X):-Agnathous(X). } 
mx(B+hll ,E4) = 0.625 
In this last case, only hII is consilient, and it shows that an extension 
can be made to B with new rules in order to cover the evidence in 
a consilient way. 

However, the example shows that in many cases mx is positively related 
to consilience, so it is a good criterion to guide knowledge creation and 
revision. Abduction has been naturally incorporated as a special case of 
explanatory induction, where, in general, the hypotheses are factual 
(although in the examples hll includes non-factual ones and it can also be 
considered an abduction). It is remarkable to see that the hypotheses 
would be more accurate if B would not be completely validated, i.e. 
3rEB p(r) < lor, even better, if a separate measure of frequency were 
added to B, so reflecting the frequency of previous animal samples. 
Moreover, r bS and rb6 should split their heads in order to compute in­
dependently their reinforcement. This all is more related to probabilistic 
abduction, which falls outside the scope of this paper. 

Finally, definition 6.2 can be parameterised with a consilience factor: 

DEFINITION 6.3. 
The degree of consilience of a theory T wrt. an evidence E is defined 
as the minimum real number k such that there exists a partition T I' 
T2 such that: k • SX(TI EB T2, E) ;;::: mx(T, E) • card(E). 

From the computational point of view, both fiX and consilience degree 
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should be computed jointly, in order to reduce the number of partitions 
which are to be examined. 

7. Inference Processes 

Explanatory induction has been distinguished as the major process to 
obtain consilient theories. The prototypical case falls under this schema: 

EXPLANATORY INDUCTION: 

Background Knowledge: empty or used auxiliarily. 
Evidence: E1 and E2• 

Process: Construct a unified theory A for E1 and E2• 

Where A should comply with consilience and plausibility restrictions 
(mx)· 

Similarly, as we have seen in the examples of the previous section, 
abduction fits naturally by a more important use of the background know­
ledge: 

ABDUCTION: 

Background Knowledge: a fact b entails E1 and E2• 

Evidence: E1 and E2• 

Process: Assume b to ensure consilience. 

Although induction and abduction are recognised as the basic processes 
in scientific discovery, there is an inference process which is the fun­
damental mechanism for obtaining consilient theories, analogy. The 
reason is simple: analogy extracts a common superstructure between two 
situations, and this 'shared' superstructure is reinforced by both situa­
tions. 

ANALOGY: 

Background Knowledge: b entails E1 and c entails E2• 

Evidence: E1 and E2 . 

Process: Extract similarities between band c into a new superstruc­
ture a in order to obtain a consilient theory composed of a, b' and 
c'. 
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We can state that analogy favours consilience. 

THEOREM 7.1. If b entails E 1, c entails E2, b does not entail EI and 
c does not entail E2 , with a new theory T = { b', c', a } such that 
TI = { b', a} I = EI and T2={c', a} I = E2, and no other proper 
subset of T covers any example, then T is consilient. 
PROOF. Since no other proper subset of T covers any example but TI 
and T2 , then there is only one possible partition to study consilience 
{Tj, T2}. Since EI and E2 are non-empty, then mx(a, E 1) < mx(a, 
EI U E2) > mx(a, E2), and then SX(T1 ffi T2, E) < mx(T, EI U E2) 
• card(E1 U E2). From definition 6.2, T is consilient. 0 

Once again, analogy, as it has been defined, allows the introduction of 
fantastic concepts. In order to talk about a 'real' analogy, some infor­
mation must be shared between band c and moved into a. In other 
words, b' and c' should be simplified wrt. band c. This can be related 
to reinforcement and extended from simple components like band c to 
sub-theories composed of many rules or components. 

DEFINITION 7.2. Non-fictitious Analogy 
Consider a theory T covering E, i.e., veEE, T I = e, which con­
tains two sub-theorfes TI and T2, which cover EI C E and E2 C E, 
respectively. A non-fictitious analogy is the addition to T of a new 
super-theory A, and the modification of TI and T2 into T'I and T'2 
such that T = «T / T1) / T2) U A U T'I U T'2 covers E, i.e. 
veEE, T'I = e, with the additional conditions that mx(T', E) ~ 
mx(T; E) and T' must be consilient wrt. EI and E2· 

This definition agrees with classical computational approaches to analogy 
(Kling 1971, Winston 1992). 

Finally, there is another process which is important for obtaining 
consilience. If the theory is not omniscient, i.e., everything that can be 
ever deduced is effectively deduced by the system, we have that deduc­
tion can be also a source of consilience. 

NON-OMNISCIENT DEDUCTION: 
Background Knowledge: We have an axiomatic theory a and two 
rules: b entails E1, and c entails E2• No relation is still established 



A COMPUTATIONAL DEFINITION OF 'CONSILIENCE' 

among b, c and a. 
Evidence: E1 and E2 • 

Process: Show that a entails both band c. 
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It is important to highlight the difference between non-omniscient deduc­
tion and computation (or deterministic proof systems). The first one can 
be informative and creative and it can connect two unrelated things, so 
increasing reinforcement, and, in many cases, it can unify separate the­
ories. In this way, induction and abduction should not be seen as inverse 
processes of deduction, in terms of information gain. In any case, the 
deductive-nomological model of explanatory induction introduced in 1949 
by Hempel and Oppenheim (Hempel 1965) is also a mistake (see e. g . 
Thagard and Shelley 1997), because the required general laws (nomos) 
are frequently discovered by the process and not initially given, as the 
very rare case of the non-omniscient deduction example. 

As a conclusion, it is better to see just a computational model of 
explanation, because any inference process like induction, deduction, 
abduction and analogy can take place in a computational system. 

8. Related Concepts 

In the beginning we have commented on some related concepts to con­
silience, especially intensionality and coherence. In this section we study 
in further detail the differences and similarities, once consilience has been 
more conGretely defined. 

8.1. Intrinsic Exceptions and Consilience 

It is easy to define an intrinsic exception or extensional patch as a rule r 
with p = 0.5, i.e. a rule that just covers one example e. Nonetheless, we 
must distinguish between: 
• completely extensional exceptions, when r does not use any rule from 
the theory to cover e, 
• partially extensional exceptions, when r uses other rules to describe e. 
It is possible to establish cleafly the relation between the former and 
consilience. The latter, however, are also usually conflicting to con-
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silience. 

THEOREM 8. 1. If a worthy theory T for an evidence E has a rule r 
with p = 0.5, and completely extensional, then T is not consilient. 
PROOF. Just choose the partition T j = T - rand T2 = T. Since p = 
0.5 then r is only used by one example er • Since it is a completely 
extensional exception, we have that r does not use any rule from T j 

to cover ep so p'(r) = peri) for all ri E T j • Let n be the number of 
the examples of the evidence E. Hence, mx(Tj , E j ) = [mx(T, E) • 
n - x(er,I}] / (n-l) = [mx(T, E) • n - 1/2 ] / (n-l) = [mx(T, E) • n 
+ mx(T, E) - mx(T, E) - 1/2 ] / (n-1) = mx(T, E) + [mx(T, E) - 1/2] 
/ (n-1). 
From definition 6.2, the inequality simplifies as follows: 
SX(Tj E9 T2, E)= mx(Tj , E j ) • [ card(E j ) - card(E12)/2 ] + mx(T2, 

E2) • [ card(E2) - card(Ej2)/2 ] = { mx(T, E) + [mx(T, E) - 1/2 ] / 

(n-l) } • [ (n-l) - (n-1)/2 ] + mx(T, E) • [ n - (n-1)/2] = mx(T, E) 
• [ (n~l) - (n-1)/2 + n - (n-t)/2 ] + [mx(T, E) - 1/2 ] • [ (n-1) -
(n-1)/2] / (n-1) = mx(T, E) • [ n ] + [mx(T, E) - 1fi ] / 2. 
Since T is worthy, then mx(T, E) ~ 0.5., and finally SX(Tj E9 T2, 

E) ~ mx(T, E) • n = mx(T, E) • card(E). 0 

This theorem justifies the avoidance of exceptions in order to obtain 
consilient theories. In the process of theory construction, if a new evi­
dence is covered extensionally, the theory necessary loses its consilience 
and revision must be done in order to 'conciliate' this new evidence with 
the previous theory. This means that, for explanatory induction, not only 
prediction errors or anomalies (consistency) but consilience can trigger 
theory revision. 

8.2. Consilience and Coherence 

Coherence has been advocated as the key issue in scientific explanation 
(Thagard 1978) and abduction (N g. and Mooney, 1990). An explanation 
is coherent with the evidence and the background knowledge if it is the 
most compatible, in the way that it confirms more positive items from the 
background knowledge and the evidence, and it activates less negative 
items. Recently, this idea has been identified with constraint satisfaction 
(see e.g. Thagard and Verbeurgt, 1997 or Thagard 1998), although the 
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term has been generally used in a broader sense (Thagard 1989). 
Despite their close relationship, we think that our definition of con­

silience has some differentiated issues wrt. coherence. For instance, the 
idea of unification is not explicitly present in coherence, although it 
comes easily out of it. In our opinion, we think that it is our measure­
ment of mean course mx which best matches a notion of 'constructive' 
coherence. To be more precise, however, our definition of mean course 
should be extended with negative reinforcement. Consequently, coherence 
and consilience would be connected in the same way as we discussed that 
mean course and consilience were connected. 

9. Conclusions 

In this paper we have addressed formally and computationally the notion 
of consilience for constructive languages. Pure semantic approaches based 
on model partition present many problems of introduction of fantastic 
concepts. A second approach based on reinforcement allows further detail 
on the relation between hypothesis and evidence, and· these fantastic 
concepts are much easier to detect. 

Different inference processes have been re-understood in the context 
of· consilient theory construction. Explanatory induction, abduction, 
analogy and even deduction are valuable tools' for obtaining consilient 
theories. 

The most important result is that consilience has been related to and 
differentiated from many other classical notions in explanatory induction 
and scientific discovery, like avoidance of anomalies and coherence. 
Moreover, it has been shown that, under consilience considerations, 
theory revision should also be triggered by unconsilient parts and not 
only by inconsistencies or anomalies. 
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