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TOPOLOGICAL ORDER AND EMERGENCE 

Jonathan Bain 

ABSTRACT 

 

Topologically ordered systems play a prominent role in current research in 

condensed matter physics; examples include systems that exhibit the quantum 

Hall effect, topological insulators, and topological superconductors.  These 

systems possess properties that are characterized by topological invariants, 

exhibit phase transitions that cannot be characterized by spontaneous 

symmetry breaking, and exhibit order that cannot be characterized in terms of 

a local order parameter.  They thus fall outside the scope of the Landau–Ginsburg 

theory of phase transitions, which, arguably, has informed much of the 

discussion, in both the physics and philosophy literature, of emergence in 

condensed matter systems.  Nevertheless, some authors have claimed that 

topologically ordered systems exhibit emergence.  This essay offers a critical 

assessment of this claim.  In particular, it identifies two types of topological 

order and observes that, whereas the alleged mechanisms underwriting these 

types differ, they nevertheless share certain features; in particular, the low-

energy behavior of such systems can be described by effective topological 

quantum field theories.  This suggests that a unified account of the emergence 

of topological order should look to a law-centric, as opposed to a mechanism-

centric, view of emergence. 
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1. Introduction 

Topologically ordered systems play a prominent role in current research 

in condensed matter physics; examples include systems that exhibit the 

quantum Hall effect, topological insulators, and topological 

superconductors (Bernevig and Hughes 2013; Hasan and Kane 2010; Wen 

2013).  These systems possess properties that are characterized by 

topological invariants, undergo phase transitions that cannot be 

characterized by spontaneous symmetry breaking, and exhibit order that 

cannot be characterized in terms of a local order parameter.  They thus 

fall outside the scope of the Landau–Ginsberg theory of phase transitions, 

which, arguably, has informed much of the discussion, in both the 

physics and philosophy literature, of emergence in condensed matter 

systems.  Nevertheless, some authors have claimed that topologically 

ordered systems exhibit emergence (Chen et al. 2010; Lancaster and 

Pexton 2015; Wen 2013).  This essay offers a critical assessment of this 

claim.  In particular, it identifies two types of topological order—

symmetry-protected topological order, and intrinsic topological order—

and observes that, whereas the alleged mechanisms underwriting these 

types differ (“short-range entanglement” versus “long-range 

entanglement”), they nevertheless share certain features; in particular, 

the low-energy behavior of such systems can be described by effective 

topological quantum field theories (Qi and Zhang 2011; Qi et al. 2008).  

This suggests that a unified account of the emergence of topological 

order should look to a law-centric, as opposed to a mechanism-centric, 

view of emergence.  Under a law-centric view, the novelty exhibited by 

an emergent system with respect to a fundamental system is 

characterized by distinct laws, as opposed to an underlying mechanism. 

In Section 2, I review the Landau–Ginsburg theory of phase transitions 

and identify three characteristics it attributes to systems that have 

motivated various authors to describe the latter as exhibiting emergence:  
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(a) a phase transition, (b) a mechanism (spontaneous symmetry 

breaking) responsible for this transition, and (c) an effective field theory 

(EFT) that characterizes the system in the vicinity of a critical point, and 

that is distinct from the theory that characterizes the system away from 

this critical point.  In Section 3, I consider how topological order differs 

from Landau–Ginsburg order, and identify two distinct types:  symmetry-

protected topological order, and intrinsic topological order.1  Section 4 

considers whether systems exhibiting such order can be said to exhibit 

emergence.  My strategy will be to consider the extent to which both 

types of topologically ordered system exhibit those characteristics that 

systems described by the Landau–Ginsburg theory exhibit and that have 

been associated with emergence.  Thus, insofar as both types of 

topologically ordered system exhibit (a) phase transitions, (b) an alleged 

mechanism responsible for these transitions, and (c) can be 

characterized by EFTs in the vicinity of their critical points, I claim that 

they exhibit emergence, at least to the same extent that Landau–

Ginsburg systems exhibit emergence.  Section 5 then considers two 

general accounts of emergence, law-centric and mechanism-centric, and 

suggests that, if emergence is to be attributed to topologically ordered 

systems, then it is best described by the law-centric view. 

 

                                                             
1 There is no consensus on the terminology used to make this distinction.  Some 

authors make it in terms of "non-interacting" versus "interacting" topological 

orders, others make it in terms of an "IQHE paradigm" versus a "FQHE 

paradigm", or "short-range entangled" states versus "long-range entangled" 

states (Neupert et al. 2014, 1).  There are also authors who use the term 

"topological order" only for the second type (Lu and Vishwanath 2012, 1). 
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2. Landau–Ginsburg order and 

emergence 

The central distinction in this essay is between condensed matter 

systems exhibiting order that is described by what various authors2 

generically call the Landau–Ginsburg theory, on the one hand, and 

condensed matter systems that exhibit topological order, on the other.  

This section offers a summary of the Landau–Ginsburg theory and 

motivations for attributing emergence to systems it describes. 

The Landau–Ginsburg theory is concerned with the order exhibited 

by a physical system that undergoes a continuous (second-order) phase 

transition from a disordered state to an ordered state.  At finite 

temperatures T, such a transition is characterized by a non-analyticity in 

the free energy density f given by: 

 f = (1 ) ln Z Vspace ,      Z =  Di exp   d dxhi   (1) 

where Vspace is the volume of d-dim space, and Z is the system’s partition 

function.  In the latter, hi is the Hamiltonian density of the system and 

 = 1/kT, where k is Boltzmann’s constant and T is the temperature.  The 

Hamiltonian density is a functional of dynamical variables i (x), which in 

 

                                                             
2 See, e.g., Bernivig and Taylor (2013, 1), Hasan and Kane (2010, 3045), Qi and 

Zhang (2011, 1058), Wen (2004, 5–7, 335–6; 2013, 1–2).  By "Landau–Ginsburg 

theory" (alternatively "Landau paradigm", "Landau theory"), these authors 

mean the techniques associated with the statistical mechanical approach to 

continuous phase transitions initiated by Landau and Ginsburg (1950), and 

extensions of it (e.g., mean field theory, renormalization theory) that allow one 

to calculate the values of critical exponents. 



TOPOLOGICAL ORDER AND EMERGENCE 81 

 

 

(1) are considered field variables3, and the integral in Z is over all field 

configurations.  The order associated with such a transition is 

characterized by a local order parameter Oi that is a functional of the 

dynamical variables.  To say O is local is to say that it depends only on 

quantities in finite regions of space.  To say O is an order parameter is to 

say that it has a non-zero value in the ordered state, and averages to zero 

in the disordered state.  In the disordered state, while it’s average is zero, 

in general it will exhibit non-zero thermal fluctuations.4  As the critical 

point in parameter space that represents the phase transition is 

approached, spatial correlations in the order parameter fluctuations 

become long-ranged, and at the critical point, the correlation length , 

which encodes the typical length of spatial correlations, diverges.5  This 

divergence of  is an indication of universality:  at a critical point, the 

system becomes scale-independent insofar as the properties associated 

with the critical point are independent of the micro-scale properties of 

the system. Thus many microphysically distinct systems can all possess 

the same critical point properties. 

Another feature of the Landau–Ginsburg theory is its characterization 

of the ordered phase as breaking a continuous symmetry of the 

disordered phase.  Such symmetry breaking entails, via Goldstone’s 

theorem, the existence of gapless modes of the system, which 

 

                                                             
3 This assumes the system is near a critical point and hence can be modeled by a 

continuum theory. 
4 For classical phase transitions, thermal fluctuations in the order parameter 

dominate.  For quantum phase transitions, quantum fluctuations dominate, and 

phase transitions can occur at zero temperature.  This distinction will be 

discussed in slightly more detail in Section 4 below. 
5 This ultimately is a reflection of a non-analyticity in the partition function Z, 

since the correlation length can be defined in terms of a correlation function, 

derived from Z, for the relevant set of quantities. 
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subsequently allows the construction of a low-energy effective field 

theory (EFT) of the order parameter fluctuations in the vicinity of the 

critical point.6  From this EFT, one can derive values for various critical 

point properties (e.g., critical exponents).  This EFT is a local quantum 

field theory, insofar as its Lagrangian density is a functional of the order 

parameter fluctuations and their derivatives evaluated at the same 

point.7 

To recap so far, in the Landau–Ginsburg framework, phase transitions 

are characterized by non-analyticities in the free energy density, order 

is characterized by a local order parameter, a change in order is 

characterized by spontaneous symmetry breaking, and the low-energy 

behavior of the system in the vicinity of a critical point can be captured 

by a local effective field theory.  I now turn to the question of how 

emergence can be attributed to systems that exhibit these 

characteristics. 

2.1  Emergence in Landau–Ginsburg Systems  

For the purposes of this essay, emergence can be understood as 

descriptive of the ontology (i.e., entities or properties) associated with a 

physical system (the emergent system) with respect to another (the 

fundamental system).  It can be minimally characterized by two general 

criteria, what Crowther (2015) refers to as Dependence and Independence.  

 

                                                             
6 A gapless mode is a state of the system at energies very close to zero.  Such low-

energy, or "soft", modes can be considered fluctuations above the ground state 

energy. 
7 Again, this is a notion of locality as a requirement that the physical quantities 

of interest must be localized in finite regions of space.  The notion of a local order 

parameter associated with a local QFT in the Landau–Ginsburg theory will be 

contrasted with the notion of a non-local order parameter associated with a 

topological QFT in the context of topological order in Section 4.3 below.  
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Dependence requires the emergent system to be ontologically 

determined, in some sense, by the fundamental system (it should not 

“float free” of the latter).  Independence requires that the emergent 

system exhibit a robust sense of novelty with respect to the fundamental 

system. 

One way of motivating the claim that systems that undergo 

continuous phase transitions exhibit the sort of novelty appropriate for 

a notion of emergence is suggested by Callender (2001, 549), who 

considers the following claims: 

 

1. Real systems have a finite number N of degrees of freedom. 

2. Real systems display (continuous) phase transitions. 

3. Phase transitions occur when the partition function has a non-

analyticity. 

4. Phase transitions are described by classical or quantum statistical 

mechanics. 

 

Callender observes that a problem with these claims is that a non-zero 

partition function for a finite system cannot display a non-analyticity.  In 

practice, this is addressed by taking the thermodynamic limit, which 

involves taking N  , while holding VN fixed, where V is the system’s 

volume.  One can then show that it is possible for systems with infinite N 

to display non-analyticities in their partition functions, and hence 

exhibit phase transitions; however, this conflicts with claims 1 and 2.  

Callender suggests that one way to reconcile claims 1–3 is by denying 4:  

“Statistical mechanics for finite N is incomplete, unable to describe phase 

transitions; therefore, they are in some sense emergent” (Callender 2001, 

549).  Thus to deny claim 4 is to say an ordered system that is the result 

of a phase transition from a disordered system, is novel with respect to 

the latter in the sense that the transition cannot be completely described 

within the statistical mechanical (viz., Landau–Ginsburg) framework. 



84 J. BAIN 

 

Some authors adopt what I will call a mechanism-centric view of 

emergence.  This view attributes a mechanism to emergent phenomena 

which is supposed to provide the causal/mechanical explanation of how 

novelty arises, and thus how Dependence can be (causally/mechanically) 

reconciled with Independence.  Without such a mechanism, it is claimed, 

the notion of emergence risks becoming trivial:  “...emergent properties 

are not a panacea, to be appealed to whenever we are puzzled by the 

properties of large systems.  In each case, we must produce a detailed 

physical mechanism for emergence, which rigorously explains the 

qualitative difference that we see with the microphysical” (Mainwood 

2006, 284).  Mainwood (2006, 107) associates this appeal to a physical 

mechanism with the “new emergentism” of prominent condensed 

matter physicists (e.g., Anderson 1972; Laughlin and Pines 2000), and, in 

the context of the Landau–Ginsburg theory, identifies the mechanism of 

most interest as spontaneous symmetry breaking:  “The claim of the New 

Emergentists is that in the phenomenon of symmetry-breaking we have 

a mechanism by which the set of ‘good coordinates’ of the whole can be 

entirely different from the sets of good coordinates which apply to the 

constituent parts when in isolation or in other wholes”.  Morrison (2012, 

148) concurs:  “...understanding emergent phenomena in terms of 

symmetry breaking—a structural dynamical feature of physical 

systems...—clarifies both how and why emergent phenomena are 

independent of any specific configuration of their microphysical base.” 

The notion of a mechanism can be understood in two ways.  A 

microphysical mechanism can be thought of as a collection of entities 

and processes that realize a general principle or regularity (Weber et al. 

2013, 59).  Alternatively, a high-level mechanism can be thought of as a 

general physical process that can be realized by any number of concrete 

microphysical mechanisms.  Examples of the latter include Morrison’s 

(2012, 149) “structural/dynamical feature of physical systems” and 

Laughlin and Pine’s (2000, 28) “higher organizing principle”.  Advocates 

of high-level mechanisms point to multiple realizability as an essential 
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feature of emergence:  the instantiation of a high-level mechanism by 

many distinct microphysical mechanisms that all share the same general 

(viz., “universal”) features is taken as a sign that these features possess a 

robust sense of novelty and hence can be taken to be emergent. 

An alternative view of emergence is what I will call a law-centric view.  

According to this view, the novelty associated with an emergent system 

is underwritten, not by an appeal to an underlying mechanism, but 

rather by an appeal to distinct laws.  According to Bain (2013), this is 

exemplified by physical systems whose low-energy behavior can be 

described by an effective field theory (EFT).  Such a system is described, 

at high-energies, by a Lagrangian density  that is a functional of 

dynamical variables .  At low-energies, the system can be described by 

an effective Lagrangian density eff  ≠  that is a functional of a 

different set of dynamical variables  , and that is formally distinct from 

.  Since  the low-energy behavior of the system is governed by laws, 

encoded in eff , and dynamical variables  that are formally distinct 

from the laws, encoded in , and dynamical variables  that govern 

its high-energy behavior, the low-energy behavior is dynamically 

independent of, and dynamically robust with respect to, the high-energy 

behavior, and hence is novel with respect to the latter.  In the context of 

the Landau–Ginsburg framework, this suggests that since a system in the 

vicinity of a critical point can be characterized by an EFT that is formally 

distinct (both in terms of laws and in terms of dynamical variables) from 

the theory that describes the system away from the critical point, the 

system near the critical point is dynamically independent of, and 

dynamically robust with respect to, the system away from the critical 

point; hence the former is emergent with respect to the latter. 

Thus, the claim that Landau–Ginsburg systems exhibit emergence can 

be underwritten by appealing to the following characteristics such 

systems display: 
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(a) Landau–Ginsburg systems exhibit  phase transitions; 

(b) Landau–Ginsburg systems exhibit a mechanism (spontaneous 

symmetry breaking) responsible for (a); and/or, 

(c) Landau–Ginsburg systems can be described by an effective field 

theory (EFT) that characterizes the system in the vicinity of a 

critical point, and that is distinct from the theory that characterizes 

the system away from the critical point 

3. Topological order 

As noted in Section 2, in the Landau–Ginsburg framework, a phase 

transition is characterized by a non-analyticity in the free energy 

density, order is characterized by a local order parameter, a change in 

order is characterized by a spontaneously broken symmetry, and the 

low-energy behavior of a system in the vicinity of a critical point is 

described by an effective field theory (EFT) that takes the form of a local 

quantum field theory.  In a topologically ordered system, a phase 

transition is characterized by a non-analyticity in the ground state 

energy density, order is characterized by a non-local order parameter (a 

topological invariant), a change in order is not characterized by a 

spontaneously broken symmetry, but rather a change in the topology of 

the state space, and the low-energy behavior of the system in the vicinity 

of a critical point is described by an EFT that takes the form of a 

topological quantum field theory.  In this section and the next I will 

attempt to explain these differences in slightly more detail.  This section 

reports on two distinct types of topological order:  symmetry-protected 

topological order, and intrinsic topological order.  Section 4 returns to 

the question of whether such systems can be said to exhibit emergence. 

 

 

 



TOPOLOGICAL ORDER AND EMERGENCE 87 

 

 

3.1  Symmetry-Protected Topological (SPT) Order 

The first type of topological order is referred to in the physics literature 

as symmetry-protected topological order.  The nature of systems 

exhibiting it can be understood within the framework of the band theory 

of solids (see, e.g., Hasan and Kane 2010).  According to this theory, 

electrons in a 2-dim crystal are described by Bloch states umk 

characterized by energy levels m and periodic momenta k restricted to a 

closed unbounded region (the “Brillion zone”) in momentum space .  An 

insulator is characterized by an energy gap that separates the occupied 

valence-band electron states from the empty conduction-band states.  

The state space for an insulator can be represented by a vector bundle, 

call it V, over the base space , with typical fiber given by a Hilbert space 

 of Bloch states (the latter are then represented by sections of V).8  

Geometrically, V can be flat or curved, with curvature represented by the 

Berry curvature m =   Am, where Am = ium k um is a connection 

defined on V.9  As a vector bundle, V is locally isomorphic to the direct 

product space   .  Globally, however, V may be “non-trivial” in the 

sense that its fibers may be “twisted”.10  Such twisting can be encoded in 

a topological invariant called the first Chern number nm, defined by 

 

                                                             
8 A vector bundle consists of a set of vector spaces (the "fibers" of the bundle) 

that are parameterized by the points of a base space in such a way that the fibers 

are smoothly related to each other. 
9 The Berry curvature characterizes the behavior of a Bloch state upon parallel 

transport around a closed curve C in .  A change in the state is reflected in a 

non-trivial Berry phase, defined by m = C Am dk. 
10 Recall that such twisting of fibers is one way to characterize a Möbius strip as 

a fiber bundle over the circle S1, with the unit interval [0, 1] as typical fiber. 
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 nm = (1/2 ) BZ m d 2k  (2) 

where the integral is over all electron momenta in the Brillouin zone.11  

The total Chern number is then given by summing nm over all N occupied 

energy bands: 

 n = 
N

m = 1
nm  (3) 

It now transpires that, while conventional insulators are characterized 

by a trivial (i.e., n = 0) state space bundle structure, there are insulating 

systems with a state space characterized by non-trivial total Chern 

numbers.  The paradigm case of this is the integer quantum Hall effect 

(IQHE).  This effect occurs when a 2-dim conductor is placed in an 

external magnetic field perpendicular to its surface.  At low temperatures 

and high magnetic fields, the transverse (or “Hall”) conductivity H 

becomes quantized in units of e2h, 

 H = pe2h (4) 

for integer p.  Thouless, et al. (1982) showed that the Hall conductivity can 

be expressed by 

 H = (e2h) 
N

m = 1
(1/2 ) BZ m d 2k (5) 

thus identifying the integer p with the total Chern number of the state 

space.  Different values of p correspond to topologically distinct state 

spaces that cannot be transformed into each other by local deformations, 

 

                                                             
11 The first Chern number is an instance of the Gauss–Bonnet theorem M = 

1/2 M KdS, where M is a 2-dim closed manifold without boundary, K is the 

local Gaussian curvature of M, and M is an integer known as the Euler 

characteristic of M (Nakahara 2003, 462.)  It can also be expressed by M = 2(1  g), 

where the genus g of M is the number of its handles.
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so long as the essential gapped structure of the energy spectrum is 

preserved.  This suggests that distinct values of p correspond to distinct 

IQHE phases.  Notably, such phases are not characterized by different 

symmetries, hence transitions between phases cannot be described by 

spontaneous symmetry breaking.  Each phase consists of a gapped bulk 

insulator state and gapless conducting edge states characterized by a 

given value of H.  The conducting states are “topologically protected” in 

the sense that they are robust under local deformations of the state space 

that preserve its topology.  Such a system that is an insulator in the bulk 

but a topologically protected conductor at its edge is referred to as a 

“topological insulator”. 

In another type of topological insulator, the role played by the 

external magnetic field in the IQHE is played by spin-orbit coupling, and 

whereas IQHE systems are not time-reversal invariant (due to the 

external magnetic field), so-called quantum spin Hall effect (QSHE) 

systems are.  Kane and Mele (2005) demonstrated that such systems can 

be characterized by a Z2 topological invariant of their state spaces.  This 

characterization was subsequently extended to 3-dimensional QSHE 

systems.  Topological insulators that exhibit the QSHE differ from those 

that exhibit the IQHE insofar as the former have symmetries (typically 

time-reversal invariance), and the conducting states are robust only 

under local deformations of  that preserve these symmetries.  They are 

thus referred to as exhibiting symmetry-protected topological (SPT) order. 

SPT order is similar to Landau–Ginsburg order insofar as both are 

characterized, in part, by symmetries; however, transitions between SPT 

orders are not characterized by a spontaneously broken symmetry; on 

the contrary, the relevant symmetry is preserved under an SPT 

transition.  Note finally, that IQHE systems are not characterized by 

symmetries, and hence, perhaps, should not be considered as possessing 

SPT order.  For the purposes of this essay, however, it is convenient to 

group both under the same category.  One might consider an IQHE system 

to be a trivial example of SPT order, for instance, where the relevant 
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symmetry is just the identity.  More importantly, both IQHE systems and 

SPT ordered systems are one-body “non-interacting” topological 

insulators, insofar as they are completely described by a one-body 

Hamiltonian in which electron–electron interactions are ignored.12  This 

is a fundamental feature that distinguishes these types of topologically 

ordered systems from the second type. 

3.2  Intrinsic Topological Order 

The second type of topological order is referred to as intrinsic topological 

order.13  Systems that exhibit this type of order have the characteristics 

of topological insulators; namely, they are gapped systems that possess a 

bulk insulating state and robust conducting edge states.14  This 

robustness is not the result of a one-body interaction with an external 

magnetic field, or internal spin-orbit coupling, as in SPT ordered systems; 

 

                                                             
12 Ryu et al. (2010) provide an exhaustive classification of non-interacting 

topological insulators (and related systems known as topological 

superconductors) in all spatial dimensions, based on whether they possess an 

integer (Z) topological invariant (like the IQHE), or a Z2 topological invariant, and 

on the type of symmetry (if any) that is topologically protected.  The latter 

include time-reversal , charge-conjugation , and the product  =  , referred 

to as a chiral, or sublattice, symmetry.  Since this "tenfold way" includes IQHE 

systems, it seems appropriate in this context to group the latter with SPT 

ordered systems in general. 
13 This terminology follows Chen et al. (2010).  Neupert et al. (2014, 1) report that 

this second type appears in the physics literature under various names, 

including "fractional topological insulators, long-range entangled phases, 

topologically ordered phases, or symmetry enriched topological phases". 
14 Bernevig and Taylor (2013, 3) report that there are exceptions. 
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rather, it is a many-body effect due to electron–electron interactions.15  

It turns out that there are two consequences of this more complex type 

of interaction.  First, unlike SPT ordered systems, intrinsic topologically 

ordered systems are characterized by degenerate ground states.  Second, 

unlike SPT ordered systems, intrinsic topologically ordered systems 

possess bulk excitations that take the form of quasiparticles and that 

obey fractional statistics. 

The “paradigm” of an intrinsic topologically ordered system is one 

that exhibits the fractional quantum Hall effect (FQHE).  The FQHE occurs 

for fractional values of p in equation (4).  Thus the identification of p with 

the (integer) first Chern number is no longer possible, and one has to look 

elsewhere for a topological invariant to explain robustness.  Wen (2013, 

1990) suggests that the topological nature of FQHE systems is encoded in 

the measures of the two features that distinguish them from IQHE 

systems (and other SPT ordered systems); namely: 

 

(i) The degeneracy of the ground state of such systems depends on the 

genus of the parameter space. 

(ii) The fractional statistics exhibited by the bulk excitations of such 

systems are encoded in non-Abelian Berry phases of the degenerate 

ground states. 

 

 

                                                             
15 This description in terms of a many-body effect of electrons is sufficient for 

the purpose of making an initial distinction between intrinsic topological order 

and SPT order; however, the former can also be described in terms of a one-body 

effect of composite particles (fermions or bosons), as Section 5 will briefly 

report. 
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Other systems that can be characterized by these measures include chiral 

spin liquids and Z2 spin liquids (Chen et al. 2010, 1–2).16 

4. Do topologically ordered systems 

exhibit emergence? 

Numerous authors have suggested that topologically ordered systems 

exhibit emergence.  With respect to intrinsic topologically ordered 

systems, Wen (2013, 6, 11) refers to a “principle of emergence” and the 

“emergence of fractional statistics and topological degeneracy on 

compact spaces”.  Elsewhere he claims “[t]opological order has many 

new emergent phenomena, such as emergent gauge theory, fractional 

charge, fractional statistics, non-Abelian statistics, and perfect 

conducting boundary” (2013, 16).  Moore (2010, 197) refers to “...the 

emergence of quasiparticles with modified charge and statistics” in FQHE 

states, and Hasan and Kane (2010, 3050) cite “...the emergence of 

Majorana fermions in [topological] superconducting systems”.  Similarly, 

Qi and Zhang (2011, 1104) refer to “...the emergence of the topological 

superconducting phase at a quantum Hall plateau transition.”  Finally, 

Lancaster and Pexton (2015, 343) seek to make sense of emergence in 

FQHE systems in terms of the mechanism of long-range entanglement, 

which they claim underwrites an “intrinsic holism”, and because of this, 

“...the FQHE bears serious consideration as an example of a 

metaphysically significant, ‘strongly’ emergent phenomenon”. 

Note that these claims attribute emergence to both types of 

topological order:  SPT order (which includes topological 

 

                                                             
16 It perhaps should be noted that the only types of intrinsic topologically 

ordered system that have been experimentally realized are FQHE systems 

(thanks to a referee for making this explicit). 
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superconductors), and intrinsic topological order (which includes 

phenomena, like the FQHE, associated with ground state degeneracies 

and bulk fractional statistics).  In assessing these claims, I will take my 

cue from the earlier discussion of emergence in Landau–Ginsburg 

systems.  While both types of topologically ordered system differ in 

fundamental respects from Landau–Ginsburg systems, the relevant 

question is whether or not they share those features of Landau–Ginsburg 

systems that have motivated the claim that the latter exhibit emergence.  

This question comes in three parts: 

 

(a) Can a topologically ordered system be described as the result of a 

phase transition? 

(b) Can a mechanism be identified that underwrites such a transition? 

(c) Can a topologically ordered system be characterized in the vicinity 

of a critical point by an effective field theory (EFT) that is distinct 

from the theory that describes the system away from the critical 

point? 

 

In anticipation of the subsequent discussion, the answers to all of these 

questions will be “yes”. 

4.1  Phase Transition 

In a Landau–Ginsburg ordered system, the transition that separates 

distinct phases can either be a classical or a quantum phase transition.  

In this context, a classical phase transition is one in which thermal 

fluctuations in the order parameter dominate, whereas a quantum phase 

transition is one in which quantum fluctuations dominate, with the 

result that a transition between phases can occur at zero temperature.  

Thus, while classical phase transitions are characterized by non-

analyticities in the free energy density f defined in equation (1), quantum 

phase transitions are characterized by non-analyticities in the ground 

state energy density E.  The latter is given by 
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 E = i(ln Z Vspacetime) ,      Z =  Di exp  d dxdi ]  (6) 

where Vspacetime is the volume of spacetime, and in the partition function Z, 

i  is the Lagrangian density of the quantum system (see, e.g., Wen 

2004, 350; Vojta 2003, 2078).  In equation (6), the partition function Z for 

a quantum system in d dimensions has been identified with a Feynman 

integral in imaginary time  , in d + 1 spacetime dimensions (the latter, 

formally, can be regarded as the partition function for a classical system 

in d + 1 dimensions).17 

In a topologically ordered system, the expectation is that the 

transition between phases takes the form of a quantum phase transition.  

In this context, this is a transition that occurs at zero temperature and is 

characterized by a non-analyticity in the ground state energy density, 

but need not necessarily be thought of as dominated by quantum 

fluctuations in the order parameter (insofar as there may not be a readily 

identifiable local order parameter).  Another way to characterize 

quantum phase transitions that addresses this difference and that will be 

relevant in the subsequent discussion of mechanism is given by Chen et 

al. (2010, 3).  Let H(g) be a Hamiltonian with a smooth dependence on 

some parameter g.  This induces a dependence O(g) on the ground state 

expectation value of a local operator O.  The quantum system described 

by H(g) can be said to undergo a quantum phase transition at g = gc just 

 

                                                             
17 See Vojta (2003, 2076) for a discussion of this "quantum–classical mapping".  

One way to motivate it is by observing that the term expHkT, with 

Hamiltonian H =  d dxh   that appears in the classical partition function in 

equation (1) resembles a time evolution operator if one identifies the time 

parameter as 1kT =  = it/, where t is a real time parameter.  At a zero 

temperature critical point, this imaginary time parameter acts like a spatial 

dimension insofar as it becomes infinite, signifying that the system is infinite. 
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when the function O(g) has a non-analyticity at gc in the 

thermodynamic limit.  A quantum phase can then be defined as an 

equivalence class of ground states (g) of all Hamiltonians that can be 

connected by a smooth path in the associated parameter space.  In other 

words, two ground states (0), (1), of H(0) and H(1), respectively, 

belong to the same quantum phase just when there is a smooth path of 

Hamiltonians H(g), 0  g  1, that connects H(0) and H(1) and that does not 

contain a quantum phase transition. 

4.2.   Mechanism 

The mechanism associated with transitions between Landau–Ginsburg 

phases is spontaneous symmetry breaking.  Chen et al. (2010, 4) suggest 

that the mechanism associated with transitions between intrinsic 

topologically ordered phases be identified with what they call long-range 

entanglement.18  This is defined in terms of the following: 

 

a state has only short-range entanglement [SRE] if and only if it 

can be transformed into an unentangled state (i.e., a direct-

product state) through a local unitary evolution.  If a state 

cannot be transformed into an unentangled state through a LU 

[local unitary] evolution, then the state has long-range 

entanglement (LRE).  (Chen et al. 2010, 4.) 

 

 

                                                             
18 Recall from Section 2 that advocates of a mechanism-centric view of 

emergence consider spontaneous symmetry breaking (SSB) as a high-level, as 

opposed to microphysical, mechanism and stress its multiple realizability as 

underwriting the type of novelty that can be associated with emergence.  The 

literature on long-range entanglement, on the other hand, when it makes this 

distinction, suggests that long-range entanglement is a microphysical 

mechanism (see, e.g., Wen 2013, 14). 
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A “local unitary evolution” is a unitary operation generated by a local 

Hamiltonian over a finite time.  Intuitively, an LRE state is a state that 

cannot be disentangled by local dynamical operations; i.e., operations 

encoded in a local Hamiltonian. 

There seem to be two motivations for identifying long-range 

entanglement as the mechanism for intrinsic topologically ordered 

phases.  The first is based on the claim that two gapped states belong to 

the same phase if and only if they are related by a local unitary evolution 

(Chen et al. 2010, 3).  In the jargon of the previous subsection, suppose the 

ground states (0), (1) of Hamiltonians H(0) and H(1) are gapped.  

The claim then is that there is an adiabatic path H(g) that connects H(0) 

and H(1) (i.e., the ground states belong to the same phase) if and only if 

 (1)U(0),     U = T expi 
0

1
dgH(g) (7) 

where U is a local unitary evolution in which T is the path-ordering 

operator, and H(g) = i Oi (g) is a sum of local operators (technically, H(g) 

need not take the same form as the Hamiltonian H(g), but the intent is 

that it encode the same local information as the latter).  Thus SRE gapped 

states belong to phases associated with unentangled, direct-product 

states, whereas LRE gapped states do not. 

The second motivation for identifying LRE as the mechanism for 

intrinsic topologically ordered phases seeks to identify direct-product 

states with “trivial topology” (i.e., the trivial case of intrinsic topological 

order).  This motivation doesn’t appear explicitly in the literature.19  It 

can be reconstructed in terms of two steps: 

 

                                                             
19 Chen et al. (2010, 4), for instance, simply state:  "Since a direct-product state is 

a state with trivial topological order, we see that a state with a short-range 

entanglement also has a trivial topological order."  The motivation here 
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1. The first step is based on the fact that the bulk states of intrinsic 

topologically ordered phases obey fractional statistics.  Technically, 

this means that these states carry representations, of dim > 1, of the 

braid group BN on N elements; one says they obey “non-Abelian 

braiding statistics”.20 

 

The condition that the braid group BN acts on the Hilbert space of states 

says nothing about whether the states that carry representations of BN 

are entangled, let alone about whether the states that carry the “trivial” 

representation of BN are direct-product states.  An additional step seems 

to be necessary to support these inferences. 

 

2. The second step is based on an analogy between the non-locality of 

states that obey non-Abelian braiding statistics, on the one hand, and 

the non-locality of entangled states on the other.  Kauffman and 

Lomonaco (2002, 2) refer to the former as “topological 

entanglement” and suggest, “a topological entanglement is a non-

 

                                                             

apparently comes from fault-tolerant quantum computation, in which states 

that obey non-Abelian braiding statistics are proposed as the basis for a 

"topological" quantum computer.  In this context, Bravyi et al. (2006, 3) identify 

a concept of "topological quantum order" (TQO) as a property of a ground state 

just when it cannot be distinguished or mapped into another orthogonal ground 

state by means of local operations (intuitively, two such grounds states are 

distinct yet share the same local properties).  But there is no essential relation 

between this type of nonlocality and the nonlocality associated with non-

Abelian braiding statistics. 
20 See, e.g., Nayak et al. (2008, 1085).  Upon parallel transport around a closed 

curve, such a state picks up a nontrivial Berry phase   ei , 0 ≤  < 2.  The 

special cases  = 0,  correspond to Bose–Einstein and Fermi–Dirac statistics, 

respectively. 
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local structure of a topological system”, whereas “a quantum 

entanglement is a non-local structural feature of a quantum system”.  

They support this analogy with examples of non-trivial topologically 

entangled states that represent links and braids, on the one hand, 

and corresponding entangled states of quantum systems on the 

other:  for instance, cutting a component of a link removes its 

“topological entanglement”, just as measuring a quantum state 

removes its entanglement.21  Based on this analogy, an unentangled 

(direct-product) state is analogous to a state with trivial braiding 

topology.22 

 

Taken together, these two motivations suggest that all SRE gapped states 

belong to the same phase as a state with trivial topological order (no 

“topological entanglement”, or trivial non-Abelian braiding statistics).  

An LRE gapped state, on the other hand, belongs to a phase with non-

trivial topological order; and, in principle, not all LRE gapped states 

belong to the same such phase.  Different LRE states can belong to 

different phases, each distinguished by a particular topological order 

(viz., topological entanglement, or non-Abelian braiding statistics). 

This identification of LRE states with intrinsic topological order leaves 

unanswered the question of how SPT order should be characterized.  

Chen et al. (2010, 5–6) answer this question by distinguishing cases of 

 

                                                             
21 Kauffman and Lomonaco (2002, 3) are careful to point out that the analogy is 

basis dependent:  a given entangled state decoheres in different ways, depending 

on the chosen basis; or, as they put it, "From a physical standpoint, seeing the 

[entangled] state as analogous to a link depends upon the choice of an 

observable". 
22 Kauffman and Lomonaco (2002, 7) caution that "...the question of the precise 

relationship between topological entanglement and quantum entanglement 

certainly awaits the arrival of more examples of unitary representations of the 

braid group". 
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local unitary evolutions (7) in which the Hamiltonian does not possess 

symmetries, from cases in which it does.  For the former cases, all SRE 

states belong to the same topologically trivial (viz., direct-product) phase.  

However, for the latter cases, equivalence classes of phases divide into 

two groups:  those generated by local unitary evolutions that break a 

relevant symmetry, and those that preserve a relevant symmetry:  

 

(i) SRE states of symmetric gapped systems related by a local unitary 

evolution that break a relevant symmetry can belong to different 

phases, depending on which symmetry is broken.  Chen et al. 

identify this type of SRE state as a Landau–Ginsburg phase. 

(ii) SRE states of symmetric gapped systems related by a local unitary 

evolution that preserves a relevant symmetry can belong to 

different phases, depending on which symmetry is preserved.  Chen 

et al. identify this type of SRE state as an SPT phase.23 

 

To summarize the discussion so far, Chen et al. (2010) suggest that the 

mechanism responsible for intrinsic topologically order is long-range 

entanglement (either symmetry-preserving or symmetry-breaking), 

whereas the mechanism responsible for SPT order is symmetry-

preserving short-range entanglement. 

4.3.   Effective Field Theory 

Recall that Landau–Ginsburg systems are characterized, in part, by an 

effective field theory (EFT) at a critical point that takes the form of a local 

 

                                                             
23 To be complete, there are also LRE states of symmetric gapped systems that 

can belong to different phases depending on which symmetry the defining local 

unitary evolution breaks or preserves.  Examples of the former are topological 

superconductors, and examples of the latter are Z2 symmetric spin liquids (Chen 

et al. 2010, 6). 
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quantum field theory.  A topologically ordered system can likewise be 

characterized by an EFT at a critical point, but the latter takes the form 

of a topological quantum field theory (TQFT).  This distinction can be made 

in the following way (after Labastida and Lozano 1997, 5).  In the Feynman 

integral approach, a local quantum field theory consists of a smooth 

(d+1)-dimensional manifold M (i.e., spacetime), a Lorentzian metric g 

on M, a set of fields i (x), and a Lagrangian density i ]  that is a 

functional of the fields and their derivatives evaluated at the same point.  

The measureable observables are vacuum expectation values of products 

of local operators Oi constructed as functionals of the fields.  These are 

defined with respect to the Feynman path integral via: 

 O1...On = 1Z  Di O1...On exp i  d d + 1xi ]   

where Z is the integral in (6) (with real time replacing imaginary time).  

In this approach, a topological quantum field theory is a local quantum 

field theory in which 

 g O1...On = 0  

for some set of local operators.  In words:  The vacuum expectation value 

of these operators is invariant under variations of the metric.  One way 

to guarantee this is if the terms in the Lagrangian density involving these 

operators are independent of the metric.24  This independence can be 

 

                                                             
24 TQFTs with this property are referred to as Schwarz type (Labastida and 

Lozano 1997, 5).  Another way to secure (9) is what is called a cohomological 

TQFT, or a TQFT of Witten type (Labastida and Lozano 1997, 7).  It should also be 

noted that, in addition to the above approach to TQFTs, there is an axiomatic 

approach that defines a TQFT as a functor from the category nCob of n-

dimensional cobordisms to the category Hilb of finite-dimensional Hilbert 

spaces (Baez 2006, 248). 
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understood as a non-local property insofar as it indicates that the 

vacuum expectation value is a topological invariant of M.25   

The Lagrangian density that encodes a TQFT is local insofar as it is a 

functional of fields (and their derivatives) that are evaluated at a single 

spacetime point.  A TQFT is non-local insofar as it possesses observables 

that are metric-independent in the sense of (9).  The non-local order 

parameter that appears in the EFT for a topologically ordered system is 

such a non-local observable.  This should be contrasted with the local 

order parameter that appears in the EFT for a Landau–Ginsburg ordered 

system, which can be defined as a metric-dependent observable. 

An example of an EFT for an intrinsic topologically ordered system is 

the TQFT that describes a system that exhibits the FQHE.  This TQFT is 

encoded in the effective Lagrangian density, 

 ,          

 , ,  = 0, 1, 2  (10) 

where s is an odd integer, the first term encodes the dynamics of a Chern–

Simons potential gauge field a, and the second and third terms encode 

the coupling of a magnetic potential A and a source j of quasiparticles 

to the Chern–Simons potential, respectively (see, e.g., Wen 2004, 298).  

Note that the first two terms in (10) are independent of a spacetime 

metric (contraction of indices is performed using the totally 

antisymmetric tensor 𝜖). 

 

                                                             
25 Strictly speaking, this notion of "topological invariant" is weaker than the 

notion that appears in topology (see, e.g., Birmingham et al. 1991, 136).  In the 

latter, a topological invariant of a manifold M is a quantity that is constant on 

the space of homeomorphism equivalence classes of M.  A metric-independent 

quantity is constant on the smaller space of all metrics on M. 
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The effective Lagrangian density (10) is intended to describe the 

behavior of a system that exhibits the FQHE in the (low-energy) vicinity 

of a critical point.  The theory of the system away from the critical point 

is described by a formally distinct Lagrangian density: 

 ,          

  i = 1, 2                                                       (11) 

where   is a second-quantized electron field, m is the electron mass, and 

the last term encodes the Coulomb interaction between electrons.  The 

Lagrangian density (11) is intended to describe the behavior of electrons 

in a 2-dim conductor in the presence of an external magnetic field at 

temperatures and magnetic field strengths away from the quantum 

critical point.  Note that (11) is a local quantum field theory that is not a 

TQFT; in particular, the terms in (11) all depend on spatial and temporal 

metrics (the Lagrangian (11) encodes a non-relativistic local quantum 

field theory).  In this case we have eff a , A , j ≠ , A, and the 

dynamical variables a , A , j of the EFT are distinct from those , A 

of the high-energy theory. 

Qi et al. (2008) (see also Qi and Zhang 2011) show how effective TQFTs 

similar to (10) can be constructed for SPT ordered systems near critical 

points in all the relevant dimensions.  These systems can also be 

characterized by non-relativistic local quantum field theories similar to 

(11) away from critical points.  An example of an EFT for an SPT ordered 

system is the TQFT that describes a system that exhibits the integer 

quantum Hall effect (IQHE).  This TQFT is encoded in the (2+1)-

dimensional effective Lagrangian density, 

 ,                , ,  = 0, 1, 2   (12) 
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where C1 is an integer (identified as the first Chern number; Qi et al. 2008, 

3).  In (12), the low-energy degrees of freedom are encoded in a non-

interacting electromagnetic potential A alone, as opposed to an 

additional Chern–Simons field a.26  An extension of (12) exists for the 

IQHE in (4+1)-dimensions: 

 , 

 , , , ,  = 0, 1, 2, 3, 4  (13) 

where C2 is an integer (identified as the second Chern number; Qi et al. 

2008, 11).  The effective Lagrangian (13) was first written down by 

Bernevig et al. (2002) in their field-theoretic formulation of Zhang and 

Hu’s (2001) four spatial dimensional extension of the quantum Hall effect.  

Whereas a QHE system in two spatial dimensions breaks time-reversal 

symmetry (due to the external magnetic field), in four spatial 

dimensions, it turns out, the system is time-reversal invariant.  Qi et al. 

take (12) to be the general form of the Lagrangian density for a time-

reversal broken (TRB) SPT ordered system in (2+1)-dim, and obtain 

Lagrangian densities for TRB SPT ordered systems in (1+1)-dim and (0+1)-

dim via a process of dimensional reduction.  They take (13) to be the 

general form of the Lagrangian density for a time-reversal invariant (TRI) 

 

                                                             
26 Qi (2013, 95) calls the theory encoded in (12) a "topological response theory", 

which is used to describe perturbations of the system due to the external 

potential A.  In contrast, Qi (2013, 96) calls the theory encoded in (10) a 

"dynamical topological field theory" insofar as it describes dynamical 

"topological" degrees of freedom of the system, as encoded in the Chern–Simons 

field a, coupled to the external probe field A.  One can show that the transverse 

(i.e., Hall) conductivity derived from (10) is given by H = (1/s ) e2h, whereas for 

(12), it is given by H = C1e
2h.  (Note that a hierarchical extension of (10) can be 

constructed for fractional filling factors other than 1/s (Wen 2004, 301).) 
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SPT ordered system in (4+1)-dim, and obtain Lagrangian densities for TRI 

SPT ordered systems in (3+1)-dim and (2+1)-dim via dimensional 

reduction. 

The above discussion indicates that both SPT ordered systems and 

intrinsic topologically ordered systems exhibit phase transitions, and 

these phase transitions can be associated with mechanisms, as well as 

EFTs in the vicinity of critical points (where the latter are simply 

associated with the phase transitions expected to separate distinct 

phases of topologically ordered systems).  Thus, to the extent that 

emergence is ascribed to Landau–Ginsburg phases that possess these 

characteristics, it should also be ascribed to both types of topologically 

ordered system.  The question for the next section is, of the two views of 

emergence, mechanism-centric and law-centric, which suggests itself 

more in the context of topological order? 

5. Mechanism-centrism versus law-

centrism 

In general, the task of articulating a notion of emergence is to resolve the 

tension between the dependence of an emergent system on a 

fundamental system, and its independence from the latter.  A 

mechanism-centric view of emergence resolves this tension by positing 

a mechanism that is responsible for independence in the presence of 

dependence.  A law-centric view underwrites independence by an appeal 

to distinct laws.  In this section, I argue that a mechanism-centric view 

faces trouble in the context of topologically ordered systems. 

On the one hand, Section 4 argued that systems that exhibit SPT order 

and intrinsic topological order should be ascribed emergence, at least to 

the extent that emergence is ascribed to systems that exhibit Landau–

Ginsburg order.  On the other hand, if emergence requires an appeal to a 

physical mechanism, and if the mechanisms for both types of topological 
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order are identified with SRE and LRE, respectively, then potential 

trouble awaits.  Recall from Section 4.2 that a state is SRE if and only if it 

can be transformed into a direct-product state via a local unitary 

evolution.  A state is LRE if and only if it cannot be transformed into a 

direct-product state via a local unitary evolution, and hence if and only if 

it is not SRE.  Thus, naively, if LRE is a mechanism for emergence, then 

SRE cannot be a mechanism that produces the same type of emergence.  

A mechanism-centric advocate of emergence is thus faced with the 

following options: 

 

(a) Reconcile the two types of topological order and their contrasting 

mechanisms of SRE and LRE, on the one hand, with either a common 

notion of emergence, or at least with distinct notions that are 

compatible; or, 

(b) Deny that emergence occurs in one or the other (or both) types of 

topologically ordered system; or, 

(c) Deny that SRE and LRE are the appropriate mechanisms that 

underlie emergence in topologically ordered systems. 

 

An example of how these options play out is given by Lancaster and 

Pexton’s (2015) insightful analysis of emergence in systems exhibiting 

the FQHE.  According to these authors (2015, 343), “...the presence of 

topological order in the FQHE is indicative of an intrinsic holism to the 

FQH system...”.  This holism should be understood as a failure of 

mereological supervenience that is “...located in the long-range 

entanglements that characterize topological states of matter” (2015, 

353). 

One initial concern with this proposal stems from its suggestion that 

long-range entanglement underwrites holism.  Earman (2015, 305) 

observes that, in general, whether or not a state is entangled depends on 

the decomposition of its algebra of observables into subsystem algebras.  

Thus whether or not a physical system exhibits holism should be 
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addressed by focusing on its algebra of observables, as opposed to its 

state.  In particular, according to Earman, holism should be associated 

with a failure of additivity of a system’s algebra of observables, since 

“...this is a precise way of capturing in algebraic terms the idea that the 

whole is not greater than the sum of its parts”  (2015, 335).27 

This problem of ambiguity of entanglement can be addressed by 

arguing for the physicality of a particular subsystem decomposition over 

the others.  In the case of FQHE systems, one might argue that the effect 

is due to electron–electron interactions, and this privileges the 

decomposition of an FQHE state in the single-particle electron basis.  

Colloquially, one might claim that the emergent FQHE system arises 

when electron states become long-range entangled with each other:  “In 

the FQH state there are a vast number of electrons which become 

holistically tied together by long-range entanglements” (Lancaster and 

Pexton 2015, 354).  A complication with this is that an FQHE system can 

be understood as a many-body interacting system of electrons, or as a 

one-body non-interacting system of composite fermions or composite 

bosons; and, importantly, the observational evidence for the effect 

underdetermines these contrasting theoretical descriptions.28  Moreover, 

 

                                                             
27 Let R be a local algebra of observables associated with spacetime region .  

Additivity requires that R be generated by the local algebras associated with 

any of  's open coverings:  R = iRi , for  = ii . 

28 See, e.g., Ezawa (2008, 227–8) for a discussion of the composite particle 

descriptions of the FQHE.  The composite fermion account involves the 

attachment of an even number of Chern–Simons fluxes to the electrons of the 

fundamental system, and this serves to preserve their statistics while reducing 

the external magnetic field to values associated with the IQHE:  in this account, 

the FQHE of interacting electrons is theoretically equivalent to the IQHE of non-

interacting composite fermions.  In the composite boson account, an odd 
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Shi (2004, 6814–16) demonstrates that a notion of “interaction-induced 

entanglement” can be defined in terms of the decomposition of a many-

particle state in the basis of eigenstates of a corresponding single-

particle Hamiltonian, and this yields different results when applied to the 

FQHE, depending on what single-particle Hamiltonian is adopted:  an 

FQHE state is interaction-induced entangled with respect to the single-

particle electron basis, whereas it is not interaction-induced entangled 

in either the composite fermion or the composite boson single-particle 

bases.  Thus if long-range entanglement is explicable as Shi’s interaction-

induced entanglement, then whether or not an FQHE state exhibits long-

range entanglement is underdetermined by the observational evidence. 

Setting aside the problem of ambiguity of entanglement, the larger 

concern with Lancaster and Pexton’s analysis just is, if LRE states exhibit 

holism because they cannot be disentangled by local unitary evolutions, 

then SRE states cannot be said to exhibit holism.  Hence if intrinsic 

topologically ordered systems, like the FQHE, exhibit emergence due to 

entanglement-induced holism, then SPT ordered systems, like the IQHE, 

do not.  This is Option (b) above, and the difficulty here is that, as Section 

4 argued, to the extent that both intrinsic topologically ordered systems 

and SPT ordered systems possess those characteristics of Landau–

Ginsburg ordered systems that motivate the ascription of emergence to 

the latter, both of the former should be ascribed emergence, too.  In 

principle, of course, one might attempt to refine these characteristics, or 

replace them with others, so that intrinsic topologically ordered systems 

and Landau–Ginsburg ordered systems share the relevant traits that 

 

                                                             

number of Chern–Simons fluxes is attached to electrons, resulting in a change 

of statistics and a cancellation of the external magnetic field, and the latter 

allows the bosons to condense at low temperatures:  in this account, the FQHE of 

interacting electrons is theoretically equivalent to a Bose–Einstein condensate 

of non-interacting composite bosons. 



108 J. BAIN 

 

characterize emergence, while SPT ordered systems do not; but the onus 

is on the mechanism-centric advocate to articulate such traits. 

Alternatively, a mechanism-centric advocate could adopt Option (a); 

in this context, one would attempt to find an ontological underpinning 

for emergence, other than holism, that is applicable to both LRE states 

and SRE states; or different ontological underpinnings, one for LRE states 

and the other for SRE states, that are compatible with each other.  Again, 

the onus is on the mechanism-centric advocate to provide these 

interpretations.  Finally, a mechanism-centric advocate could adopt 

Option (c) and identify a mechanism, other than LRE and SRE, that is 

common to both intrinsic topologically ordered systems and SPT ordered 

systems; but what this mechanism is needs to be worked out. 

My point is not to say these options for a mechanism-centric view of 

emergence in topologically ordered systems are impossible to flesh out.  

Rather, the point is just that a law-centric view of emergence seems to 

fair better.  A law-centric advocate points out that both an intrinsic 

topologically ordered system and an SPT ordered system can be 

described by an effective topological quantum field theory (one example 

is equation 10) in the vicinity of a critical point, and by a non-relativistic 

local quantum field theory (e.g., equation 11) away from the critical point.  

The fact that these theories are formally distinct, not just in terms of the 

forms of their equations of motion (as encoded in formally distinct 

Lagrangian densities), but also in terms of the dynamical variables they 

use to encode the degrees of freedom of the system, suggests to a law-

centric advocate that the system at a critical point is dynamically 

independent of, and dynamically robust with respect to, the system away 

from the critical point.  And this suggests that the system at a critical 

point is emergent with respect to the system away from the critical point.  

No further appeal to a causal/mechanical description of the system need 

be made. 
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6. Conclusion 

If one claims that Landau–Ginsburg ordered systems exhibit emergence, 

then one should also claim that topologically ordered systems exhibit 

emergence, both intrinsic topologically ordered systems and symmetry-

protected topologically ordered systems.  Moreover, no appeal to a 

causal/mechanical mechanism is required to support these claims.  One 

need only note that Landau–Ginsburg ordered systems and topologically 

ordered systems are both characterized by effective field theories near 

their critical points, and these effective theories are distinct in relevant 

ways from the theories that describe the systems away from their critical 

points.  These relevant ways guarantee that the system near the critical 

point is sufficiently novel from the system away from the critical point 

to justify describing the former as emergent with respect to the latter. 
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